Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadja C. de Souza-Pinto is active.

Publication


Featured researches published by Nadja C. de Souza-Pinto.


Free Radical Biology and Medicine | 2009

Mitochondria and reactive oxygen species

Alicia J. Kowaltowski; Nadja C. de Souza-Pinto; Roger F. Castilho; Anibal E. Vercesi

Mitochondria are a quantitatively relevant source of reactive oxygen species (ROS) in the majority of cell types. Here we review the sources and metabolism of ROS in this organelle, including the conditions that regulate the production of these species, such as mild uncoupling, oxygen tension, respiratory inhibition, Ca2+ and K+ transport, and mitochondrial content and morphology. We discuss substrate-, tissue-, and organism-specific characteristics of mitochondrial oxidant generation. Several aspects of the physiological and pathological roles of mitochondrial ROS production are also addressed.


Carcinogenesis | 2008

Base excision repair of oxidative DNA damage and association with cancer and aging

Scott Maynard; Shepherd H. Schurman; Charlotte Harboe; Nadja C. de Souza-Pinto; Vilhelm A. Bohr

Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA/RNA polymerases. Damage-induced mutagenesis has been linked to various malignancies. The major mechanism that cells use to repair oxidative damage lesions, such as 8-hydroxyguanine, formamidopyrimidines, and 5-hydroxyuracil, is base excision repair (BER). The BER pathway in the nucleus is well elucidated. More recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases.


DNA Repair | 2009

Accumulation of (5′S)-8,5′-cyclo-2′-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice

Guldal Kirkali; Nadja C. de Souza-Pinto; Pawel Jaruga; Vilhelm A. Bohr; Miral Dizdaroglu

Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5S)-8,5-cyclo-2-deoxyadenosine (S-cdA). Among many DNA lesions, S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5 covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS.


Toxicological Sciences | 2011

Mechanisms of manganese-induced neurotoxicity in primary neuronal cultures: the role of manganese speciation and cell type

Raúl Bonne Hernández; Marcelo Farina; Breno Pannia Espósito; Nadja C. de Souza-Pinto; Fernando Barbosa; Cristina Suñol

Manganese (Mn) is an essential trace element required for the proper functioning of a variety of physiological processes. However, chronic exposures to Mn can cause neurotoxicity in humans, especially when it occurs during critical stages of the central nervous system development. The mechanisms mediating this phenomenon as well as the contribution of Mn speciation and the sensitivity of different types of neuronal cells in such toxicity are poorly understood. This study was aimed to investigate the mechanisms mediating the toxic effects of MnCl(2), Mn(II) citrate, Mn(III) citrate, and Mn(III) pyrophosphate in primary cultures of neocortical (CTX) and cerebellar granular (CGC) neurons. Cell viability, mitochondrial function, and glutathione levels were evaluated after Mn exposure. CGC were significantly more susceptible to Mn-induced toxicity when compared with CTX. Moreover, undifferentiated CGC were more vulnerable to Mn toxicity than mature neurons. Mitochondrial dysfunction was observed after the exposure to all the tested Mn species. Ascorbate protected CGC against Mn-induced neurotoxicity, and this event seemed to be related to the dual role of ascorbate in neurons, acting as antioxidant and metabolic energetic supplier. CTX were protected from Mn-induced toxicity by ascorbate only when coincubated with lactate. These findings reinforce and extend the notion of the hazardous effects of Mn toward neuronal cells. In addition, the present results indicate that Mn-induced neurotoxicity is influenced by brain cell types, their origins, and developmental stages as well as by the chemical speciation of Mn, thus providing important information about Mn-induced developmental neurotoxicity and its risk assessment.


Methods | 2010

Mitochondrial base excision repair assays

Scott Maynard; Nadja C. de Souza-Pinto; Morten Scheibye-Knudsen; Vilhelm A. Bohr

The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur. Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene-specific repair assays, chromatographic techniques as well as current optimizations for detecting 8-oxoG lesions in cells by immunofluorescence. Throughout the assay descriptions we will include methodological considerations that may help optimize the assays in terms of resolution and repeatability.


Mitochondrion | 2014

Formation and repair of oxidative damage in the mitochondrial DNA.

Meltem Muftuoglu; Mateus P. Mori; Nadja C. de Souza-Pinto

The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.


Environmental and Molecular Mutagenesis | 2014

Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi

Matheus Andrade Rajão; Carolina Furtado; Ceres Luciana Alves; Danielle Passos-Silva; Michelle Barbi de Moura; Bruno Luiz Fonseca Schamber-Reis; Aline Araujo Zuma; João Pedro Vieira-da-Rocha; Juliana Bório Ferreira Garcia; Isabela Cecília Mendes; Sérgio D.J. Pena; Andrea M. Macedo; Glória Regina Franco; Nadja C. de Souza-Pinto; Marisa H. G. Medeiros; Angela K. Cruz; Maria Cristina M. Motta; Santuza M. R. Teixeira; Carlos Renato Machado

Benznidazole (BZ) is the most commonly used drug for the treatment of Chagas disease. Although BZ is known to induce the formation of free radicals and electrophilic metabolites within the parasite Trypanosoma cruzi, its precise mechanisms of action are still elusive. Here, we analyzed the survival of T. cruzi exposed to BZ using genetically modified parasites overexpressing different DNA repair proteins. Our results indicate that BZ induces oxidation mainly in the nucleotide pool, as heterologous expression of the nucleotide pyrophosphohydrolase MutT (but not overexpression of the glycosylase TcOgg1) increased drug resistance in the parasite. In addition, electron microscopy indicated that BZ catalyzes the formation of double‐stranded breaks in the parasite, as its genomic DNA undergoes extensive heterochromatin unpacking following exposure to the drug. Furthermore, the overexpression of proteins involved in the recombination‐mediated DNA repair increased resistance to BZ, reinforcing the idea that the drug causes double‐stranded breaks. Our results also show that the overexpression of mitochondrial DNA repair proteins increase parasite survival upon BZ exposure, indicating that the drug induces lesions in the mitochondrial DNA as well. These findings suggest that BZ preferentially oxidizes the nucleotide pool, and the extensive incorporation of oxidized nucleotides during DNA replication leads to potentially lethal double‐stranded DNA breaks in T. cruzi DNA. Environ. Mol. Mutagen. 55:309–321, 2014.


European Journal of Pharmacology | 2013

Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin

Rute Alves Pereira e Costa; Mariana P. Fernandes; Nadja C. de Souza-Pinto; Anibal E. Vercesi

Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam.


Biochimica et Biophysica Acta | 2015

Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress.

Luis Alberto Luévano-Martínez; Maria Fernanda Forni; Valquiria Tiago dos Santos; Nadja C. de Souza-Pinto; Alicia J. Kowaltowski

Mitochondria play a key role in adaptation during stressing situations. Cardiolipin, the main anionic phospholipid in mitochondrial membranes, is expected to be a determinant in this adaptive mechanism since it modulates the activity of most membrane proteins. Here, we used Saccharomyces cerevisiae subjected to conditions that affect mitochondrial metabolism as a model to determine the possible role of cardiolipin in stress adaptation. Interestingly, we found that thermal stress promotes a 30% increase in the cardiolipin content and modifies the physical state of mitochondrial membranes. These changes have effects on mtDNA stability, adapting cells to thermal stress. Conversely, this effect is cardiolipin-dependent since a cardiolipin synthase-null mutant strain is unable to adapt to thermal stress as observed by a 60% increase of cells lacking mtDNA (ρ0). Interestingly, we found that the loss of cardiolipin specifically affects the segregation of mtDNA to daughter cells, leading to a respiratory deficient phenotype after replication. We also provide evidence that mtDNA physically interacts with cardiolipin both in S. cerevisiae and in mammalian mitochondria. Overall, our results demonstrate that the mitochondrial lipid cardiolipin is a key determinant in the maintenance of mtDNA stability and segregation.


Toxicology | 2017

Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants

Deborah A. Roubicek; Nadja C. de Souza-Pinto

The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure.

Collaboration


Dive into the Nadja C. de Souza-Pinto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anibal E. Vercesi

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Vilhelm A. Bohr

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mateus P. Mori

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kizzy Cezário

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Lucymara Fassarella Agnez-Lima

Federal University of Rio Grande do Norte

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge