Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadja Schilling is active.

Publication


Featured researches published by Nadja Schilling.


The Journal of Experimental Biology | 2010

The influence of foot posture on the cost of transport in humans

Christopher B. Cunningham; Nadja Schilling; Christoph Anders; David R. Carrier

SUMMARY Although humans appear to be specialized for endurance running, the plantigrade posture of our feet, in which the heel contacts the substrate at the beginning of a step, seems incompatible with economical running. In this study, we tested the hypothesis that plantigrade foot posture reduces the energetic cost of transport (COT) during walking in humans. When human subjects walked with their heels slightly elevated in a ‘low-digitigrade’ posture, COT increased by 53% above that of normal plantigrade walking. By contrast, there was no difference in COT when subjects ran with digitigrade versus plantigrade foot posture. Stride frequency increased and stride length decreased when subjects switched to digitigrade walking; however, this change did not influence the COT. Additionally, we found that possible reductions in postural stability appear not to have caused the elevated cost of digitigrade walking. Digitigrade walking, however, did (1) increase the external mechanical work performed by the limbs; (2) reduce the pendular exchange of kinetic and potential energy of the center of mass; (3) increase the average ground reaction force moment at the ankle joint; and (4) increase the recruitment of major extensor muscles of the ankle, knee, hip and back. These observations suggest that plantigrade foot posture improves the economy of walking. Relative to other mammals, humans are economical walkers, but not economical runners. Given the great distances hunter-gatherers travel, it is not surprising that humans retained a foot posture, inherited from our more arboreal great ape ancestors, that facilitates economical walking.


Experimental Brain Research | 2001

Spatiotemporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions.

H.Ch. Scholle; N.P. Schumann; F. Biedermann; D.F. Stegeman; R. Graßme; K. Roeleveld; Nadja Schilling; Martin S. Fischer

Abstract. Multichannel surface EMG recordings of a multiheaded skeletal muscle during cyclic locomotion combined with cineradiography were analysed in a chronic experiment. The resulting detailed two-dimensional activation pattern from the long and lateral triceps brachii heads of the rat during treadmill locomotion were combined with gait characteristics and fibre typing of the muscle. Shortly before ground contact of the forelimb, maximum muscle activity was found in the proximal part of the long head of the muscle. During the stance phase maximum activity was observed in the proximal part of the lateral head. The frequency dependent behaviour of cross-covariance functions over both muscle heads confirmed this selective shift in activation. In the lateral triceps brachii head of the investigated rats, exclusively type II fibres were found. In the long head the frequency of type I fibres was the highest in the deep muscle layers, proximally more than distally, whereas type II fibres were dominant in more superficial muscle layers. A combination of physiological and histological findings supports an anticipating mechanism whereby fine-tuning of the vertical foot down manoeuvre is mainly achieved by the (type I fibre dominated) proximal deep compartment of the biarticular long triceps brachii head and force generation is predominantly executed by the monoarticular lateral triceps brachii head.


Frontiers in Zoology | 2011

Evolution of the axial system in craniates: morphology and function of the perivertebral musculature

Nadja Schilling

The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the bodys center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.


The Journal of Experimental Biology | 2010

Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods

Nadja Schilling; David R. Carrier

SUMMARY The body axis plays a central role in tetrapod locomotion. It contributes to the work of locomotion, provides the foundation for the production of mechanical work by the limbs, is central to the control of body posture, and integrates limb and trunk actions. The epaxial muscles of mammals have been suggested to mobilize and globally stabilize the trunk, but the timing and the degree to which they serve a particular function likely depend on the gait and the vertebral level. To increase our understanding of their function, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three cranio-caudal levels in dogs while they walked, trotted and galloped. The level of muscle recruitment was significantly higher during trotting than during walking, but was similar during trotting and galloping. During walking, epaxial muscle activity is appropriate to produce lateral bending and resist long-axis torsion of the trunk and forces produced by extrinsic limb muscles. During trotting, they also stabilize the trunk in the sagittal plane against the inertia of the center of mass. Muscle recruitment during galloping is consistent with the production of sagittal extension. The sequential activation along the trunk during walking and galloping is in accord with the previously observed traveling waves of lateral and sagittal bending, respectively, while synchronized activity during trotting is consistent with a standing wave of trunk bending. Thus, the cranio-caudal recruitment patterns observed in dogs resemble plesiomorphic motor patterns of tetrapods. In contrast to other tetrapods, mammals display bilateral activity during symmetrical gaits that provides increased sagittal stability and is related to the evolution of a parasagittal limb posture and greater sagittal mobility.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The musculoskeletal system of humans is not tuned to maximize the economy of locomotion

David R. Carrier; Christoph Anders; Nadja Schilling

Humans are known to have energetically optimal walking and running speeds at which the cost to travel a given distance is minimized. We hypothesized that “optimal” walking and running speeds would also exist at the level of individual locomotor muscles. Additionally, because humans are 60–70% more economical when they walk than when they run, we predicted that the different muscles would exhibit a greater degree of tuning to the energetically optimal speed during walking than during running. To test these hypotheses, we used electromyography to measure the activity of 13 muscles of the back and legs over a range of walking and running speeds in human subjects and calculated the cumulative activity required from each muscle to traverse a kilometer. We found that activity of each of these muscles was minimized at specific walking and running speeds but the different muscles were not tuned to a particular speed in either gait. Although humans are clearly highly specialized for terrestrial locomotion compared with other great apes, the results of this study indicate that our locomotor muscles are not tuned to specific walking or running speeds and, therefore, do not maximize the economy of locomotion. This pattern may have evolved in response to selection to broaden the range of sustainable running speeds, to improve performance in motor behaviors not related to endurance locomotion, or in response to selection for both.


Journal of Biomechanics | 2010

A novel method of studying fascicle architecture in relaxed and contracted muscles.

Heiko Stark; Nadja Schilling

A muscles architecture, described by geometric variables such as fascicle pennation angles or lengths, plays a crucial role in its functionality. Usually, single parameters are used to estimate force vectors or lengthening rates, thereby assuming that they represent the architecture properly and are constant during contraction. To describe muscle architecture in more detail and compare relaxed and contracted states, we developed and validated a new approach. The m. soleus of the laboratory rat was shock-frozen while relaxed and under isometric contraction, reconstructed three-dimensionally from histological sections, and fascicle lengths, curvatures and pennation angles, as well as the shape of the aponeuroses were analysed. Remarkable differences in volume distribution and the shapes of the aponeuroses as well as locally varying changes in the fascicle architecture were observed. While the mean pennation angle increased by only 2° due to contraction, local changes of up to 4° were observed. Fascicle curvature increased in the distal but remained unchanged in the proximal parts. Our approach may help to identify functional subunits within the muscle, i.e., regions with homogeneous architectural properties. Our results are discussed regarding the input parameters essential for realistic muscle modelling and challenge maximum isometric force estimations that are based on the physiological cross-sectional area or the Hill-model.


The Journal of Experimental Biology | 2012

Activity of extrinsic limb muscles in dogs at walk, trot and gallop.

Stephen M. Deban; Nadja Schilling; David R. Carrier

SUMMARY The extrinsic limb muscles perform locomotor work and must adapt their activity to changes in gait and locomotor speed, which can alter the work performed by, and forces transmitted across, the proximal fulcra of the limbs where these muscles operate. We recorded electromyographic activity of 23 extrinsic forelimb and hindlimb muscles and one trunk muscle in dogs while they walked, trotted and galloped on a level treadmill. Muscle activity indicates that the basic functions of the extrinsic limb muscles – protraction, retraction and trunk support – are conserved among gaits. The forelimb retains its strut-like behavior in all gaits, as indicated by both the relative inactivity of the retractor muscles (e.g. the pectoralis profundus and the latissimus dorsi) during stance and the protractor muscles (e.g. the pectoralis superficialis and the omotransversarius) in the first half of stance. The hindlimb functions as a propulsive lever in all gaits, as revealed by the similar timing of activity of retractors (e.g. the biceps femoris and the gluteus medius) during stance. Excitation increased in many hindlimb muscles in the order walk–trot–gallop, consistent with greater propulsive impulses in faster gaits. Many forelimb muscles, in contrast, showed the greatest excitation at trot, in accord with a shorter limb oscillation period, greater locomotor work performed by the forelimb and presumably greater absorption of collisional energy.


The Journal of Experimental Biology | 2009

Function of the epaxial muscles during trotting

Nadja Schilling; David R. Carrier

SUMMARY In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated the moments acting on the trunk and the pelvis in dogs trotting on a treadmill. Confirming results of previous studies, both muscles exhibited a biphasic and bilateral activity. The higher burst was associated with the second half of ipsilateral hindlimb stance phase, the smaller burst occurred during the second half of ipsilateral hindlimb swing phase. The asymmetry was noticeably larger in the m. longissimus thoracis et lumborum than in the m. multifidus lumborum. Although our manipulations of the inertia of the trunk produced results that are consistent with previous studies indicating that the epaxial muscles stabilize the trunk against accelerations in the sagittal plane, the responses of the epaxial muscles to manipulations of trunk inertia were small compared with their responses when moments produced by the extrinsic muscles of the hindlimb were manipulated. Our results indicate that the multifidus and longissimus muscles primarily stabilize the pelvis against (1) vertical components of hindlimb retractor muscles and (2) horizontal components of the hindlimb protractor and retractor muscles. Consistent with this, stronger effects of the manipulations were observed in the posterior sampling sites.


international workshop on robot motion and control | 2001

Transfer of biological principles into the construction of quadruped walking machines

Hartmut Witte; Rémi Hackert; K.E. Lilje; Nadja Schilling; Voges D; G. Klauer; W. Ilg; J. Albiez; A. Seyfarth; D. Germann; Manfred Hiller; R. Dillmann; Martin S. Fischer

In the wide range of possible biological and technical solutions for legged terrestrial locomotion, quadrupeds represent a compromise between lightweight construction, dynamic stability, and usage of self-stabilizing effects and minimization of neural control. Several biomechanical features indicate that mammals form interesting and preferable paradigms for the construction of walking machines, even if their morphology and locomotory functions in some issues seem to be more complicated than that of the phylogenetically older amphibians and reptiles.


Biological Cybernetics | 2013

Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics

Konstantinos Karakasiliotis; Nadja Schilling; Jean-Marie Cabelguen; Auke Jan Ijspeert

Salamanders have captured the interest of biologists and roboticists for decades because of their ability to locomote in different environments and their resemblance to early representatives of tetrapods. In this article, we review biological and robotic studies on the kinematics (i.e., angular profiles of joints) of salamander locomotion aiming at three main goals: (i) to give a clear view of the kinematics, currently available, for each body part of the salamander while moving in different environments (i.e., terrestrial stepping, aquatic stepping, and swimming), (ii) to examine what is the status of our current knowledge and what remains unclear, and (iii) to discuss how much robotics and modeling have already contributed and will potentially contribute in the future to such studies.

Collaboration


Dive into the Nadja Schilling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hartmut Witte

Technische Universität Ilmenau

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen M. Deban

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge