Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nagendra Kumar Kaushik is active.

Publication


Featured researches published by Nagendra Kumar Kaushik.


PLOS ONE | 2014

Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment.

Nagendra Kumar Kaushik; Neha Kaushik; Daehoon Park; Eun H. Choi

This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues.


Bioorganic & Medicinal Chemistry Letters | 2014

Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials

Khushbu Kushwaha; Nagendra Kumar Kaushik; Subhash C. Jain

A series of novel 2H-chromen-2-one derivatives decorated with 1,2,3-triazole moiety were designed and synthesized using the click reaction of azidoalkyloxy-2H-chromen-2-ones with different propargylamines. Propargylamines were obtained by alkylation of various heterocyclic amines with propargyl bromide. Newly synthesized compounds and intermediates were evaluated for their antifungal activity against four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus and Candida albicans). Antibacterial studies were also carried out against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermis) and four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Klebsiella pneumoniae). In vitro, bioassay results showed that all the synthesized compounds exhibited excellent activity against fungal strains Aspergillus fumigatus, Aspergillus flavus and Candida albicans. Interestingly, all the compounds have shown even superior activity than the reference drug miconazole against Aspergillus fumigatus. Morpholine and N-acetyl piperazine containing compounds 10c and 10e have shown promising activity against various bacterial strains. Compound 10e was found to be most active against Pseudomonas aeruginosa. Based on, in silico pharmacokinetic studies, compounds 10a-e were identified as lead compounds for future investigation due to their lower toxicity, high drug score values and good oral bioavailability as per OECD guidelines.


Journal of Physics D | 2016

Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

Nagendra Kumar Kaushik; Neha Kaushik; Booki Min; Ki Hong Choi; Young June Hong; Vandana Miller; Alexander Fridman; Eun Ha Choi

The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.


RSC Advances | 2012

TMAO and sorbitol attenuate the deleterious action of atmospheric pressure non-thermal jet plasma on α-chymotrypsin

Pankaj Attri; Pannuru Venkatesu; Nagendra Kumar Kaushik; Eun Ha Choi

Enzymes exhibit a substantial degree of structural variability in the folded state and they are very sensitive to environmental changes. In order to investigate the effect of environmental changes on enzymes, we have studied the effect of cold atmospheric pressure plasma jets (APPJ) on α-chymotrypsin (CT). The APPJ consists of microdischarges, which are ejected from porous alumina through a 1 mm hole, reaching the CT samples and resulting in changes in the CT conformation. Furthermore, to gain insight into the contribution of the co-solvents, such as osmolytes (1 M trimethylamine N-oxide (TMAO), 1 M proline, 1 M betaine, 1 M sorbitol and 1 M glycerol) and the denaturant (1 M urea), on CT against the APPJ action, we monitored the associated structural changes in α-chymotrypsin (CT) using circular dichroism (CD), fluorescence and NMR measurements. Contrasting results are obtained from experimental data in the case of TMAO and urea, which allow us to infer that TMAO is able to attenuate strongly the deleterious action of APPJ on CT. Furthermore, the deleterious action of urea is enhanced in the presence of APPJ. The alterations in the secondary structure of this β/β protein, as quantified by the CD spectra, show reasonable enhancement for the β-strands in the presence of osmolytes as compared to buffer, even after the treatment with APPJ.


Molecules | 2012

Synthesis and Anticancer Activity of Di(3-thienyl)methanol and Di(3-thienyl)methane

Nagendra Kumar Kaushik; Hong Seon Kim; Young June Chae; Young Nam Lee; Gi-Chung Kwon; Eun Ha Choi; In Tae Kim

Di(3-thienyl)methanol (2) and di(3-thienyl)methane (3) have been synthesized and screened against the T98G (brain cancer) cell line. Treatment induced cell death (MTT and macro-colony assay), growth inhibition, cytogenetic damage (micronuclei formation), were studied as cellular response parameters. Treatment with the compounds enhanced growth inhibition and cell death in a concentration dependent manner in both T98G and HEK (normal) cell lines. At higher concentrations (>20 µg/mL) the cytotoxic effects of the compounds were highly significant. The effect on clonogenic capacity and micronuclei formation observed after treatment of cells. Amongst the compounds, compound 2 exhibited potent activity against T98G brain cancer cells. Despite potent in vitro activity, both compounds exhibited less cytotoxicity against normal human HEK cells at all effective concentrations.


Biomaterials | 2016

Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT

Nagendra Kumar Kaushik; Neha Kaushik; Ki Chun Yoo; Nizam Uddin; J.S. Kim; Su Jae Lee; Eun Ha Choi

Metastasis, the primary cause of tumor cell transformation, is often activated during cancer invasion and progression and is associated with poor therapeutic outcomes. The effects of combined treatments that included PEG-coated gold nanoparticles (GNP) and cold plasma on epithelial-mesenchymal transition (EMT) and the maintenance of cancer stem cells (CSC) have not been described so far. Here, we report that co-treatment with GNP and cold plasma inhibited proliferation in cancer cells by abolishing the activation of the PI3K/AKT signaling axis. In addition, co-treatment reversed EMT in solid tumor cells by reducing the secretion of a number of proteins, resulting in the upregulation of epithelial markers such as E-cadherin along with down-regulation of N-Cadherin, Slug and Zeb-1. The inhibition of the PI3K/AKT pathway and the reversal of EMT by co-treatment prevented tumor cells growth in solid tumors. Furthermore, we show that GNP and plasma also suppresses tumor growth by decreasing mesenchymal markers in tumor xenograft mice models. Importantly, co-treatment resulted in a substantial decrease in sphere formation and the self-renewal capacity of glioma-like stem cells. Together, these results indicate a direct link between a decrease of EMT and an increase in cell death in solid tumors following co-treatment with cold plasma and GNP.


Scientific Reports | 2017

Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines

Neha Kaushik; Minjung Kim; Rae Kwon Kim; Nagendra Kumar Kaushik; Ki Moon Seong; Seon Young Nam; Su Jae Lee

Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24− population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.


Journal of Chemical Sciences | 2014

Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

Afsar Ali; Deepak Bansal; Nagendra Kumar Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

AbstractSeveral pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five′ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values. Graphical AbstractPyridine-amide compounds appended with protected (1P-6P) and deprotected (1-6) phenol/catechol groups were synthesized and characterized. These compounds are efficacious on various cancer cells and less toxic to normal human cells.


Oncotarget | 2017

Treatment of oral hyperpigmentation and gummy smile using lasers and role of plasma as a novel treatment technique in dentistry: An introductory review

Nayansi Jha; Jae Jun Ryu; Rizwan Wahab; Abdulaziz A. Al-Khedhairy; Eun Ha Choi; Nagendra Kumar Kaushik

Gingival hyperpigmentation and the condition known as gummy smile are very common dental cosmetic problems. Gingival hyperpigmentation arises due to the excess presence of melanin in certain regions of the gums. In the case of gummy smile, more than the required amount of gingival tissue is exposed upon smiling. An aesthetically pleasing smile should expose only a negligible amount of gingival tissue. Gummy smile and gingival hyperpigmentation can have detrimental effects on the aesthetic quality of a smile, and thereby a wide variety of treatment options must be taken into consideration depending patient outcome objectives. The use of a laser as a treatment modality is considered to be a promising option for such cases. We aim to explain the effects of using a laser on the gingiva and discuss the advantages and disadvantages of this type of treatment and the resulting alteration of the genetic composition of the gingival tissue. This article reviews the histological aspects and biological effects of a laser treatment for oral hyperpigmentation and gummy smile and analyzes the use of the laser as a modality to improve the smiles of people with hyperpigmentation and excessive gingival display. We also attempt to provide insight into the use of plasma as a novel technology for medical and dental research and its future implications with regard to, dental soft tissue procedures.


Data in Brief | 2016

Data on combination effect of PEG-coated gold nanoparticles and non-thermal plasma inhibit growth of solid tumors.

Nagendra Kumar Kaushik; Neha Kaushik; Ki Chun Yoo; Nizam Uddin; J.S. Kim; Su Jae Lee; Eun Ha Choi

Highly resistant tumor cells are hard to treat at low doses of plasma. Therefore, researchers have gained more attention to development of enhancers for plasma therapy. Some enhancers could improve the efficacy of plasma towards selectivity of cancer cells damage. In this dataset, we report the application of low doses of PEG-coated gold nanoparticles with addition of plasma treatment. This data consists of the effect of PEG-coated GNP and cold plasma on two solid tumor cell lines T98G glioblastoma and A549 lung adenocarcinoma. Cell proliferation, frequency of cancer stem cell population studies by this co-treatment was reported. Finally, we included in this dataset the effect of co-treatment in vivo, using tumor xenograft nude mice models. The data supplied in this article supports the accompanying publication “Low doses of PEG-coated gold nanoparticles sensitize solid tumors to cold plasma by blocking the PI3K/AKT-driven signaling axis to suppress cellular transformation by inhibiting growth and EMT” (N. K. Kaushik, N. Kaushik, K. C. Yoo, N Uddin, J. S. Kim, S. J. Lee et al., 2016) [1].

Collaboration


Dive into the Nagendra Kumar Kaushik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javed Musarrat

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge