Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naghmeh Nejat is active.

Publication


Featured researches published by Naghmeh Nejat.


Molecular Genetics and Genomics | 2015

Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

Naghmeh Nejat; David M. Cahill; Ganesan Vadamalai; Mark Ziemann; James Rookes; Neda Naderali

Abstract Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host–phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.


Critical Reviews in Biotechnology | 2017

Plant–pathogen interactions: toward development of next-generation disease-resistant plants

Naghmeh Nejat; James Rookes; Nitin Mantri; David M. Cahill

Abstract Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.


Critical Reviews in Biotechnology | 2016

Toward understanding of rice innate immunity against Magnaporthe oryzae

Parisa Azizi; M. Y. Rafii; S. N. A. Abdullah; Naghmeh Nejat; Mahmood Maziah; M. M. Hanafi; M. A. Latif; Mahbod Sahebi

Abstract The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice.


The Scientific World Journal | 2015

Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus): The Two Faces of a Versatile Herb

Naghmeh Nejat; Alireza Valdiani; David M. Cahill; Yee-How Tan; Mahmood Maziah; Rambod Abiri

Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organisms ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.


International Journal of Molecular Sciences | 2012

Expression patterns of genes involved in the defense and stress response of Spiroplasma citri infected Madagascar Periwinkle Catharanthus roseus.

Naghmeh Nejat; Ganesan Vadamalai; Matthew Dickinson

Madagascar periwinkle is an ornamental and a medicinal plant, and is also an indicator plant that is highly susceptible to phytoplasma and spiroplasma infections from different crops. Periwinkle lethal yellows, caused by Spiroplasma citri, is one of the most devastating diseases of periwinkle. The response of plants to S. citri infection is very little known at the transcriptome level. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate the expression levels of four selected genes involved in defense and stress responses in naturally and experimentally Spiroplasma citri infected periwinkles. Strictosidine β-glucosidase involved in terpenoid indole alkaloids (TIAs) biosynthesis pathway showed significant upregulation in experimentally and naturally infected periwinkles. The transcript level of extensin increased in leaves of periwinkles experimentally infected by S. citri in comparison to healthy ones. A similar level of heat shock protein 90 and metallothionein expression was observed in healthy, naturally and experimentally spiroplasma-diseased periwinkles. Overexpression of Strictosidine β-glucosidase demonstrates the potential utility of this gene as a host biomarker to increase the fidelity of S. citri detection and can also be used in breeding programs to develop stable disease-resistance varieties.


Journal of Plant Diseases and Protection | 2013

Diagnostic techniques for detection of phytoplasma diseases: past and present

Naghmeh Nejat; Ganesan Vadamalai

Phytoplasmas are intracellular plant pathogens originated from a single lineage derived from Gram-positive bacteria and belong to the class Mollicutes. Phytoplasmas are associated with important diseases in hundreds of economic plant species worldwide. They are also prevalent in natural forest ecosystems and wild plant species. Phytoplasmas are recalcitrant to cultivation and are often difficult to detect and identify due to their erratic distribution, low concentration, seasonal fluctuation and enzyme-inhibitory plant poly-saccharide and polyphenolic compounds especially in woody perennial plant hosts. Rapid, sensitive, accurate and early diagnosis of phytoplasma diseases is indispensable to reduce their economical impact. Several serological and molecular techniques have been developed for accurate and sensitive detection of phytoplasmas in both host plants and insect vectors.


Current Issues in Molecular Biology | 2017

Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence

Naghmeh Nejat; Nitin Mantri

Environmental pollution, global warming and climate change exacerbate the impact of biotic and abiotic stresses on plant growth and yield. Plants have evolved sophisticated defence network, also called innate immune system, in response to ever- changing environmental conditions. Significant progress has been made in identifying the key stress-inducible genes associated with defence response to single stressors. However, relatively little information is available on the signaling crosstalk in response to combined biotic/abiotic stresses. Recent evidence highlights the complex nature of interactions between biotic and abiotic stress responses, significant aberrant signaling crosstalk in response to combined stresses and a degree of overlap, but unique response to each environmental stimulus. Further, the results of simultaneous combined biotic and abiotic stress studies indicate that abiotic stresses particularly heat and drought enhance plant susceptibility to plant pathogens. It is noteworthy that global climate change is predicted to have a negative impact on biotic stress resistance in plants. Therefore, it is vital to conduct plant transcriptome analysis in response to combined stresses to identify general or multiple stress- and pathogen-specific genes that confer multiple stress tolerance in plants under climate change. Here, we discuss the recent advances in our understanding of the molecular mechanisms of crosstalk in response to biotic and abiotic stresses. Pinpointing both, common and specific components of the signaling crosstalk in plants, allows identification of new targets and development of novel methods to combat biotic and abiotic stresses under global climate change.


Critical Reviews in Biotechnology | 2018

Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses

Naghmeh Nejat; Nitin Mantri

Abstract Spectacular progress in high-throughput transcriptome sequencing and expression profiling using next-generation sequencing technologies have recently revolutionized molecular biology and allowed massive advances in identifying the genomic regions and molecular mechanisms underlying transcriptional regulation of growth, development, and stress response. Through recent research, non-coding RNAs, in particular long non-coding RNAs, have emerged as key regulators of transcription in eukaryotes. Long non-coding RNAs are vastly heterogeneous groups of RNAs that execute a broad range of essential roles in various biological processes at the epigenetic, transcriptional, and post-transcriptional levels. They modulate transcription through diverse mechanisms. Recently, numerous lncRNAs have been identified to be associated with defense responses to biotic and abiotic stresses. These have been suggested to perform indispensable roles in plant immunity and adaptation to environmental conditions. However, only a few lncRNAs have been functionally characterized in plants. In this paper, we summarize the present knowledge of lncRNAs, review the recent advances in understanding regulatory functions of lncRNAs, and highlight the emerging roles of lncRNAs in regulating immune responses in plants.


PLOS ONE | 2015

Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

Parisa Azizi; M. Y. Rafii; Maziah Mahmood; Siti Norziah Abdullah; M. M. Hanafi; Naghmeh Nejat; Muhammad Alif Mohammad Latif; Mahbod Sahebi

The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.


Plant Disease | 2011

First Report of Spiroplasma citri (-Induced) Associated with Periwinkle Lethal Yellows in Southeast Asia

Naghmeh Nejat; Ganesan Vadamalai; Kamaruzaman Sijam; Matthew Dickinson

Madagascar periwinkle, Catharanthus roseus (L.) G. Don, is a member of the Apocynaceae plant family that is native to Madagascar and produces dimeric terpenoid indole alkaloids that are used in the treatment of hypertension and cancer. Periwinkle as an indicator plant is highly susceptible to phytoplasmas and spiroplasma infection from different crops, and has been found to be naturally infected with spiroplasmas in Arizona, California, and the Mediterranean countries. In this study, surveys of suspected diseased periwinkles were conducted in various regions of Selangor State, Malaysia. Periwinkles showing rapid decline in the number and size of the flowers, premature abscission of buds and flowers, reduction in leaf size, chlorosis of the leaf tips and margins, general chlorosis, and stunting and dying plants were collected. These symptoms were widespread on periwinkle in this state. Diagnosis of the disease was based on symptomatology, grafting, serology (ELISA), PCR techniques, and cultivation. Tests for transmission by grafting were conducted using symptomatic periwinkle plants. Symptoms were induced on all eight graft-inoculated healthy periwinkles approximately 2 weeks after side grafting. Preliminary examination was performed by ELISA with Spiroplasma citri Saglio polyclonal antibody that was prepared against an Iranian S. citri isolate (H. Rahimian, unpublished data). Leaf extracts of all 24 symptomatic periwinkles gave positive ELISA reactions at OD405 readings ranging from 0.310 to 0.654 to the antibody against S. citri by the indirect ELISA method. Six healthy periwinkle leaves gave OD405 readings around 0.128. Total nucleic acids were extracted from 10 symptomatic and 5 asymptomatic plants (4). PCR using the ScR16F1/ScR16R1 primer pair designed to detect S. citri in carrot and P1/P7 and secA for1/rev3 primer pairs designed for identification of phytoplasmas were used to detect the causal agent (1-3). Amplification failed when the P1/P7 universal phytoplasma primer pair was used for diseased samples. However, the PCR assays resulted in products of 1,833 and 800 bp with ScR16F1/ScR16R1 and secA for1/rev3, respectively. Five of each ScR16F1/ScR16R1 and SecAfor1/SecArev3 products were cloned with the Topo TA cloning kit (Invitrogen, Carlsbad, CA), sequenced, and deposited as GenBank Accession Nos. HM015669 and FJ011099, respectively. Sequences for both genes indicated that S. citri was associated with the disease on periwinkle. ScR16F1/ScR16R1 products cloned from symptomatic periwinkles had 98% sequence identity with S. citri (GenBank Accession No. AM285316), while nucleotide sequences of SecAfor1/SecArev3 products had 88% sequence identity with S. citri GII3-3X (GenBank Accession No. AM285304). S. citri was cultivated from 10 S. citri-infected periwinkles using filtration and SP-4 media. Twenty culture tubes started to change culture medium color from red to yellow 1 month after cultivation. Helical and motile S. citri was observed in the dark-field microscope. To our knowledge, this is the first report on the presence and occurrence of S. citri in Southeast Asia and its association with lethal yellows on periwinkle in Malaysia. References: (1) J. Hodgetts et al. Int. J. Syst. Evol. Microbiol. 58:1826, 2008. (2) I.-M. Lee et al. Phytopathology 85:728, 1995. (3) I.-M. Lee et al. Plant Dis. 90:989, 2006. (4) Y.-P. Zhang et al. J. Virol. Methods. 71:45, 1998.

Collaboration


Dive into the Naghmeh Nejat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Naderali

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Parisa Azizi

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

M. M. Hanafi

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

M. Y. Rafii

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Mahbod Sahebi

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge