Nagi Idris
University of Bradford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nagi Idris.
Pharmacology & Therapeutics | 2010
Joanna C. Neill; Samuel A. Barnes; Samantha Cook; Ben Grayson; Nagi Idris; Samantha L. McLean; Shikha Snigdha; Lakshmi Rajagopal; Michael K. Harte
Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.
Behavioural Brain Research | 2007
Ben Grayson; Nagi Idris; Jo C. Neill
The novel object recognition (NOR) task is a paradigm employed to detect both disruption and improvement of non-spatial memory in rats. PCP (phencyclidine) may be used to model aspects of schizophrenia symptomology in rats, in particular cognitive deficits. The aim of this study was to investigate the ability of typical and atypical antipsychotics to improve a sub-chronic PCP-induced impairment in cognition using the NOR task. Female hooded-Lister rats (195+/-12 g) received either vehicle (0.9% saline twice daily) or PCP (2 mg/kg, twice daily) for 7 days followed by 7-days drug free. Haloperidol (0.05 and 0.075 mg/kg), clozapine (1 and 5mg/kg), risperidone (0.05, 0.1 and 0.2 mg/kg) or vehicle (veh, saline) was administered i.p. 30 min prior to testing. Rats completed an acquisition trial followed by an inter-trial interval of 1 min, then a retention trial. Following sub-chronic vehicle treatment, rats spent significantly (p<0.05) more time exploring the novel compared to the familiar object, an effect that was abolished in the sub-chronic PCP treated animals. Clozapine (1.0 and 5.0 mg/kg) and risperidone (0.2 mg/kg) but not haloperidol significantly attenuated the PCP-induced impairment such that animals again spent significantly more time exploring the novel compared with familiar object (p<0.05). These results support our earlier work showing that acute PCP induces a robust object recognition deficit in female rats. Clozapine and risperidone but not haloperidol showed efficacy to reverse the deficit induced by sub-chronic PCP suggesting that this test may have some validity for assessing efficacy for improvement of cognitive deficit symptoms of schizophrenia.
Journal of Psychopharmacology | 2012
Samantha L. McLean; Nagi Idris; Ben Grayson; David F Gendle; Claire Mackie; Anne Simone Josephine Lesage; Darrel J Pemberton; Jo C. Neill
The α7 nicotinic acetylcholine receptors (nAChRs) have been highlighted as a target for cognitive enhancement in schizophrenia. Adult female hooded Lister rats received sub-chronic phencyclidine (PCP) (2 mg/kg) or vehicle i.p. twice daily for 7 days, followed by 7 days’ washout. PCP-treated rats then received PNU-120596 (10 mg/kg; s.c.) or saline and were tested in the attentional set-shifting task. Sub-chronic PCP produced a significant cognitive deficit in the extra-dimensional shift (EDS) phase of the task (p < 0.001, compared with vehicle). PNU-120596 significantly improved performance of PCP-treated rats in the EDS phase of the attentional set-shifting task (p < 0.001). In conclusion, these data demonstrate that PNU-120596 improves cognitive dysfunction in our animal model of cognitive dysfunction in schizophrenia, most likely via modulation of α7 nACh receptors.
European Neuropsychopharmacology | 2009
Samantha L. McLean; Nagi Idris; Marie L. Woolley; Joanna C. Neill
Phencyclidine (PCP) produces cognitive deficits of relevance to schizophrenia in animal models. The aim was to investigate the efficacy of the D(1)-like receptor agonist, SKF-38393, to improve PCP-induced deficits in the novel object recognition (NOR) and operant reversal learning (RL) tasks. Rats received either sub-chronic PCP (2 mg/kg) or vehicle for 7 days, followed by a 7-day washout. Rats were either tested in NOR or the RL tasks. In NOR, vehicle rats successfully discriminated between novel and familiar objects, an effect abolished in PCP-treated rats. SKF-38393 (6 mg/kg) significantly ameliorated the PCP-induced deficit (P<0.01) an effect significantly antagonised by SCH-23390 (0.05 mg/kg), a D(1)-like receptor antagonist (P<0.01). In the RL task sub-chronic PCP significantly reduced performance in the reversal phase (P<0.001); SKF-38393 (6.0 mg/kg) improved this PCP-induced deficit, an effect antagonised by SCH-23390 (P<0.05). These results suggest a role for D(1)-like receptors in improvement of cognitive function in paradigms of relevance to schizophrenia.
European Neuropsychopharmacology | 2011
Samantha L. McLean; Ben Grayson; Nagi Idris; Anne S. Lesage; Darrel J. Pemberton; Claire Mackie; Jo C. Neill
RATIONALE Nicotinic α7 acetylcholine receptors (nAChRs) have been highlighted as a target for cognitive enhancement in schizophrenia. AIM To investigate whether the deficits induced by sub-chronic phencyclidine (PCP) in reversal learning and novel object recognition could be attenuated by the selective α7 nAChR full agonist, PNU-282987. METHODS Adult female hooded-Lister rats received sub-chronic PCP (2mg/kg) or vehicle i.p. twice daily for 7days, followed by 7 days washout. In cohort 1, PCP-treated rats then received PNU-282987 (5, 10, 20mg/kg; s.c.) or vehicle and were tested in the reversal-learning task. In cohort 2, PCP-treated rats received PNU-282987 (10mg/kg; s.c.) or saline for 15days and were tested in the novel object recognition test on day 1 and on day 15, to test for tolerance. RESULTS Sub-chronic PCP produced significant deficits in both cognitive tasks (P<0.01-0.001). PNU-282987 attenuated the PCP-induced deficits in reversal learning at 10mg/kg (P<0.01) and 20mg/kg (P<0.001), and in novel object recognition at 10mg/kg on day 1 (P<0.01) and on day 15 (P<0.001). CONCLUSIONS These data show that PNU-282987 has efficacy to reverse PCP-induced deficits in two paradigms of relevance to schizophrenia. Results further suggest that 15-day once daily dosing of PNU-282987 (10mg/kg s.c.) does not cause tolerance in the rat. This study suggests that activation of α7 nAChRs, may represent a suitable strategy for improving cognitive deficits of relevance to schizophrenia.
Behavioural Brain Research | 2010
Samantha L. McLean; Jo C. Neill; Nagi Idris; Hugh M. Marston; Erik H. F. Wong; Mohammed Shahid
BACKGROUND Asenapine is a new pharmacological agent for the acute treatment of schizophrenia and bipolar disorder. It has relatively higher affinity for serotonergic and alpha(2)-adrenergic than dopaminergic D(2) receptors. We evaluated the effects of asenapine, risperidone, and olanzapine on acute and subchronic psychotomimetic-induced disruption of cued reversal learning in rats. METHODS After operant training, rats were treated acutely with d-amphetamine (0.75 mg/kg intraperitoneally [i.p.]) or phencyclidine (PCP; 1.5mg/kg i.p.) or subchronically with PCP (2mg/kg i.p. for 7 days). We assessed the effects of acute coadministration of asenapine, risperidone, or olanzapine on acute d-amphetamine- and PCP-induced deficits and the effects of long-term coadministration of these agents (for 28 additional days) on the deficits induced by subchronic PCP. RESULTS Deficits in reversal learning induced by acute d-amphetamine were attenuated by risperidone (0.2mg/kg i.p.). Acute PCP-induced impairment of reversal learning was attenuated by acute asenapine (0.025 mg/kg subcutaneously [s.c.]), risperidone (0.2mg/kg i.p.), and olanzapine (1.0mg/kg i.p.). Subchronic PCP administration induced an enduring deficit that was attenuated by acute asenapine (0.075 mg/kg s.c.) and by olanzapine (1.5mg/kg i.p.). Asenapine (0.075 mg/kg s.c.), risperidone (0.2mg/kg i.p.), and olanzapine (1.0mg/kg i.p.) all showed sustained efficacy with chronic (29 days) treatment to improve subchronic PCP-induced impairments. CONCLUSION These data suggest that asenapine may have beneficial effects in the treatment of cognitive symptoms in schizophrenia. However, this remains to be validated by further clinical evaluation.
Journal of Pharmacology and Experimental Therapeutics | 2011
Charles H. Large; Silvia Bison; Ilaria Sartori; Kevin D. Read; Alessandro Gozzi; Davide Quarta; Marinella Antolini; Emma Hollands; Catherine H. Gill; Martin J. Gunthorpe; Nagi Idris; Jo C. Neill; Giuseppe Alvaro
Sodium channel inhibition is a well precedented mechanism used to treat epilepsy and other hyperexcitability disorders. The established sodium channel blocker and broad-spectrum anticonvulsant lamotrigine is also effective in the treatment of bipolar disorder and has been evaluated in patients with schizophrenia. Double-blind placebo-controlled clinical trials found that the drug has potential to reduce cognitive symptoms of the disorder. However, because of compound-related side-effects and the need for dose titration, a conclusive evaluation of the drugs efficacy in patients with schizophrenia has not been possible. (5R)-5-(4-{[(2-Fluorophenyl)methyl]oxy}phenyl)-l-prolinamide (GSK2) and (2R,5R)-2-(4-{[(2-fluorophenyl)methyl]oxy}phenyl)-7-methyl-1,7-diazaspiro[4.4]nonan-6-one (GSK3) are two new structurally diverse sodium channel blockers with potent anticonvulsant activity. In this series of studies in the rat, we compared the efficacy of the two new molecules to prevent a cognitive deficit induced by the N-methyl-d-aspartic acid receptor antagonist phencyclidine (PCP) in the reversal-learning paradigm in the rat. We also explored the effects of the drugs to prevent brain activation and neurochemical effects of PCP. We found that, like lamotrigine, both GSK2 and GSK3 were able to prevent the deficit in reversal learning produced by PCP, thus confirming their potential in the treatment of cognitive symptoms of schizophrenia. However, higher doses than those required for anticonvulsant efficacy of the drugs were needed for activity in the reversal-learning model, suggesting a lower therapeutic window relative to mechanism-dependent central side effects for this indication.
Journal of Psychopharmacology | 2011
Pooja Sood; Nagi Idris; Susan Cole; Ben Grayson; Joanna C. Neill; Andrew M. J. Young
This study investigated the effects of the dopamine D4 receptor agonist, PD168077, on recognition memory using a novel object recognition task, which detects disruption and improvement of recognition memory in rats by measuring their ability to discriminate between familiar and novel objects. When acquisition and test were 6 h apart (experiment 1), control rats failed to discriminate between familiar and novel objects at test. Rats given low doses of PD168077 (0.3; 1.0 mg/kg) also failed to discriminate between the objects, while rats given higher doses (3.0; 10.0 mg/kg) explored the novel object more than the familiar object, indicating retained memory of the familiar object. Thus, at higher doses, PD168077 improved recognition memory in rats. Experiment 2 tested whether PD168077 would attenuate deficits in novel object recognition induced by sub-chronic phencyclidine. Testing was 1 min after acquisition, such that vehicle pre-treated rats differentiated between the novel and familiar objects: however, sub-chronic phencyclidine-treated rats failed to discriminate between the two, indicating disruption of recognition memory. PD168077 (10 mg/kg) restored the ability of phencyclidine-treated rats to differentiate between the novel and familiar objects, indicating improved recognition memory. The results suggest that D4 receptor activation can improve cognitive dysfunction in an animal model relevant to schizophrenia.
Frontiers in Behavioral Neuroscience | 2009
Nagi Idris; Jo C. Neill; Charles H. Large
Recent studies in our laboratory have shown that PCP (phencyclidine) and d-amphetamine induce a cognitive deficit in rats, in a paradigm of potential relevance for the pathology of schizophrenia. Atypical, but not classical antipsychotics and the anticonvulsant, lamotrigine have been shown to prevent a selective reversal learning deficit induced by PCP. In contrast, only haloperidol reversed the d-amphetamine-induced deficit. The present study aimed to explore the ability of two anticonvulsants with differing mechanism of action, valproate and phenytoin to attenuate the cognitive deficits induced by PCP and d-amphetamine in the reversal learning paradigm. PCP at 1.5 mg/kg and d-amphetamine at 0.5 mg/kg both produced a selective and significant reduction in performance of the reversal phase with no effect on the initial phase of the task in female-hooded Lister rats. Valproate (25–200 mg/kg) and phenytoin (25–50 mg/kg) had no effect on performance when administered alone. Valproate (100–200 mg/kg), whose principle action is thought to be the enhancement of GABA transmission, was unable to prevent the cognitive deficit induced by either PCP or d-amphetamine. Conversely, phenytoin (50 mg/kg), a use-dependent sodium channel inhibitor, significantly prevented the deficit induced by PCP, but not d-amphetamine. These results add to our earlier work with lamotrigine, and suggest that sodium channel blockade may be a mechanism by which some anticonvulsant drugs can prevent the PCP-induced deficit. These data have implications for the use of anticonvulsant drugs in the treatment of cognitive or psychotic disorders.
Psychopharmacology | 2005
Nagi Idris; P. Repeto; Joanna C. Neill; Charles H. Large