Nagore Puente
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nagore Puente.
Nature Neuroscience | 2012
Giovanni Benard; Federico Massa; Nagore Puente; Joana Lourenço; Luigi Bellocchio; Edgar Soria-Gómez; Isabel Matias; Anna Delamarre; Mathilde Metna-Laurent; Astrid Cannich; Etienne Hebert-Chatelain; Christophe Mulle; Silvia Ortega-Gutiérrez; Mar Martín-Fontecha; Matthias Klugmann; Stephan Guggenhuber; Beat Lutz; Jürg Gertsch; Francis Chaouloff; María L. López-Rodríguez; Pedro Grandes; Rodrigue Rossignol; Giovanni Marsicano
The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB1) is present at the membranes of mouse neuronal mitochondria (mtCB1), where it directly controls cellular respiration and energy production. Through activation of mtCB1 receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB1 receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB1 receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein–coupled receptor signaling in the brain.
Nature Neuroscience | 2010
Luigi Bellocchio; Pauline Lafenetre; Astrid Cannich; Daniela Cota; Nagore Puente; Pedro Grandes; Francis Chaouloff; Pier Vincenzo Piazza; Giovanni Marsicano
Activation of cannabinoid type-1 receptors (CB1) is universally recognized as a powerful endogenous orexigenic signal, but the detailed underlying neuronal mechanisms are not fully understood. Using combined genetic and pharmacological approaches in mice, we found that ventral striatal CB1 receptors exerted a hypophagic action through inhibition of GABAergic transmission. Conversely, brain CB1 receptors modulating excitatory transmission mediated the well-known orexigenic effects of cannabinoids.
The Journal of Neuroscience | 2010
Chiayu Q. Chiu; Nagore Puente; Pedro Grandes; Pablo E. Castillo
Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB1Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB1Rs and dopamine type 2 receptors (D2Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D2Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D2R signaling does not diminish I-LTD. Facilitation of eCB–LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.
The Journal of Neuroscience | 2004
Christopher Kushmerick; Gareth D. Price; Holger Taschenberger; Nagore Puente; Robert Renden; Jacques I. Wadiche; Robert M. Duvoisin; Pedro Grandes; Henrique von Gersdorff
We investigated the mechanisms by which activation of group I metabotropic glutamate receptors (mGluRs) and CB1 cannabinoid receptors (CB1Rs) leads to inhibition of synaptic currents at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) of the rat auditory brainstem. In ∼50% of the MNTB neurons tested, activation of group I mGluRs by the specific agonist (s)-3,5-dihydroxyphenylglycine (DHPG) reversibly inhibited AMPA receptor- and NMDA receptor-mediated EPSCs to a similar extent and reduced paired-pulse depression, suggestive of an inhibition of glutamate release. Presynaptic voltage-clamp experiments revealed a reversible reduction of Ca2+ currents by DHPG, with no significant modification of the presynaptic action potential waveform. Likewise, in ∼50% of the tested cells, the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN) reversibly inhibited EPSCs, presynaptic Ca2+ currents, and exocytosis. For a given cell, the amount of inhibition by DHPG correlated with that by WIN. Moreover, the inhibitory action of DHPG was blocked by the CB1R antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) and occluded by WIN, indicating that DHPG and WIN operate via a common pathway. The inhibition of EPSCs by DHPG, but not by WIN, was abolished after dialyzing 40 mm BAPTA into the postsynaptic cell, suggesting that DHPG activated postsynaptic mGluRs. Light and electron microscopy immunolabeling indicated a presynaptic expression of CB1Rs and postsynaptic localization of mGluR1a. Our data suggest that activation of postsynaptic mGluRs triggers the Ca2+-dependent release of endocannabinoids that activate CB1 receptors on the calyx terminal, which leads to a reduction of presynaptic Ca2+ current and glutamate release.
The Journal of Neuroscience | 2005
Robert Renden; Holger Taschenberger; Nagore Puente; Dmitri A. Rusakov; Robert M. Duvoisin; Lu-Yang Wang; Knut P. Lehre; Henrique von Gersdorff
We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1μm LY341495 (2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid)], suggesting that elevated resting glutamate concentration specifically activates group II and group III mGluRs. Using mGluR subtype-specific agonists and antagonists, we determined that increased glutamate activates presynaptic mGluR2/3 and mGluR8 receptors but not mGluR4, although this receptor is present. Surprisingly, in older animals (P16–P18), transporter blockade had no effect on EPSC amplitude because of a developmental downregulation of group II/III mGluR activation in rats and mice. In contrast to other CNS synapses, we observed no effect of transporter blockade on EPSC decay kinetics, although expression of glutamate transporters was strong in nearby glial processes at both P9 and P17. Finally, using a low-affinity AMPA receptor antagonist (γ-d-glutamylglycine), we show that desensitization occurs at P8–P10 but is absent at P16–P18, even during trains of high-frequency (100–300 Hz) stimulation. We suggest that diffusion and transporter activation are insufficient to clear synaptically released glutamate at immature calyces, resulting in significant desensitization. Thus, mGluRs may be expressed in the immature calyx to help limit glutamate release. In the more mature calyx, there is a far smaller diffusional barrier attributable to the highly fenestrated synaptic terminal morphology, so AMPA receptor desensitization is avoided and mGluR-mediated inhibition is not necessary.
The Journal of Neuroscience | 2005
Susana Mato; David Robbe; Nagore Puente; Pedro Grandes; Olivier J. Manzoni
Alterations of long-term synaptic plasticity have been proposed to participate in the development of addiction. To preserve synaptic functions, homeostatic processes must be engaged after exposure to abused drugs. At the mouse cortico-accumbens synapses, a single in vivo injection of Δ9-tetrahydrocannabinol (THC) suppresses endocannabinoid-mediated long-term depression. Using biochemical and electrophysiological approaches, we now report that 1 week of repeated in vivo THC treatment reduces the coupling efficiency of cannabinoid CB1 receptors (CB1Rs) to Gi/o transduction proteins, as well as CB1R-mediated inhibition of excitatory synaptic transmission at the excitatory synapses between the prefrontal cortex and the nucleus accumbens (NAc). Nonetheless, we found that cortico-accumbens synapses unexpectedly express normal long-term depression because of a reversible switch in its underlying mechanisms. The present data show that, in THC-treated mice, long-term depression is expressed because a presynaptic mGluR2/3 (metabotropic glutamate receptor 2/3)-dependent mechanism replaces the impaired endocannabinoid system. Thus, in the NAc, a novel form of presynaptic homeostasis rescues synaptic plasticity from THC-induced deficits.
Nature | 2016
Etienne Hebert-Chatelain; Tifany Desprez; Román Serrat; Luigi Bellocchio; Edgar Soria-Gómez; Arnau Busquets-Garcia; Antonio C. Pagano Zottola; Anna Delamarre; Astrid Cannich; Peggy Vincent; Marjorie Varilh; Laurie M. Robin; Geoffrey Terral; M. Dolores García-Fernández; Michelangelo Colavita; Wilfrid Mazier; Filippo Drago; Nagore Puente; Leire Reguero; Izaskun Elezgarai; Jean-William Dupuy; Daniela Cota; Maria-Luz Lopez-Rodriguez; Gabriel Barreda-Gómez; Federico Massa; Pedro Grandes; Giovanni Benard; Giovanni Marsicano
Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.
The Journal of Neuroscience | 2008
Léma Massi; Izaskun Elezgarai; Nagore Puente; Leire Reguero; Pedro Grandes; Olivier J. Manzoni; François Georges
The endocannabinoid system is involved in multiple physiological functions including reward. Cannabinoids potently control the activity of midbrain dopamine cells, but the contribution of cortical projections in this phenomenon is unclear. We show that the bed nucleus of the stria terminalis (BNST) efficient relays cortical excitation to dopamine neurons of the ventral tegmental area (VTA). Anatomical and in vivo electrophysiological evidence demonstrate that excitatory projections arising exclusively from the infralimbic cortex converge on BNST neurons, which in turn project to and excite >80% VTA dopamine cells. At the ultrastructural level, cannabinoid type 1 receptors are detected within the BNST on axon terminals arising from the infralimbic cortex. We found that intra-BNST infusion of a cannabinoid agonist inhibits the firing of dopamine cells evoked by stimulation of the infralimbic cortex. Our data identify a new neuronal substrate for the actions of cannabinoids in the reward pathway.
The Journal of Comparative Neurology | 2001
Jon Jatsu Azkue; Matilde Murga; Oskar Fernández-Capetillo; José María Mateos; Izaskun Elezgarai; Rocı́o Benı́tez; Alexandra Osorio; Javier Dı́ez; Nagore Puente; Aurora Bilbao; Angel Bidaurrazaga; Rainer Kuhn; Pedro Grandes
Studies indicate that metabotropic glutamate receptors (mGluRs) may play a role in spinal sensory transmission. We examined the cellular and subcellular distribution of the mGluR subtype 4a in spinal tissue by means of a specific antiserum and immunocytochemical techniques for light and electron microscopy. A dense plexus of mGluR4a‐immunoreactive elements was seen in the dorsal horn, with an apparent accumulation in lamina II. The immunostaining was composed of sparse immunoreactive fibres and punctate elements. No perikaryal staining was seen. Immunostaining for mGluR4a was detected in small to medium‐sized cells but not in large cells in dorsal root ganglia. At the electron microscopic level, superficial dorsal horn laminae demonstrated numerous immunoreactive vesicle‐containing profiles. Labelling was present in the cytoplasmic matrix, but accretion of immunoreaction product to presynaptic specialisations was commonly observed. Axolemmal labelling was confirmed by using a preembedding immunogold technique, which revealed distinctive deposits of gold immunoparticles along presynaptic thickenings with an average centre‐to‐centre distance of 41 nm (41.145 ± 13.59). Immunoreactive terminals often formed synaptic contacts with dendritic profiles immunonegative for mGluR4a. Immunonegative dendritic profiles were observed in apposition to both mGluR4a‐immunoreactive and immunonegative terminals. Diffuse immunoperoxidase reaction product was also detected in dendritic profiles, some of which were contacted by mGluR4a‐immunoreactive endings, but only occassionally were they observed to accumulate immunoreaction product along the postsynaptic density. Terminals immunoreactive for mGluR4a also formed axosomatic contacts. The present results reveal that mGluR4a subserves a complex spinal circuitry to which the primary afferent system seems to be a major contributor. J. Comp. Neurol. 430:448–457, 2001.
Molecular metabolism | 2014
Etienne Hebert-Chatelain; Leire Reguero; Nagore Puente; Beat Lutz; Francis Chaouloff; Rodrigue Rossignol; Pier-Vincenzo Piazza; Giovanni Benard; Pedro Grandes; Giovanni Marsicano
Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expose investigators to risks of false positive and/or false negative results. As an example, the functional presence of cannabinoid type 1 (CB1) receptors on brain mitochondrial membranes (mtCB1) was recently reported and rapidly challenged, claiming that the original observation was likely due to artifact results. Here, we addressed this issue by directly comparing the procedures used in the two studies. Our results show that the use of appropriate controls and quantifications allows detecting mtCB1 receptor with CB1 receptor antibodies, and that, if mitochondrial fractions are enriched and purified, CB1 receptor agonists reliably decrease respiration in brain mitochondria. These data further underline the importance of adapted experimental procedures to study brain mitochondrial functions.