Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naheed Banu is active.

Publication


Featured researches published by Naheed Banu.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2009

In vivo antioxidant status: A putative target of antidepressant action

Ayesha Zafir; Anjum Ara; Naheed Banu

Oxidative stress is a critical route of damage in various psychological stress-induced disorders, such as depression. Antidepressants are widely prescribed to treat these conditions; however, few animal studies have investigated the effect of these drugs on endogenous antioxidant status in the brain. The present study employed a 21-day chronic regimen of random exposure to restraint stress to induce oxidative stress in brain, and behavioural aberrations, in rodents. The forced swimming (FST) and sucrose preference tests were used to identify depression-like phenotypes, and reversal in these indices indicated the effectiveness of treatment with fluoxetine (FLU; 20 mg/kg/day, p.o.; selective serotonin reuptake inhibitor), imipramine (IMI; 10 mg/kg/day, p.o.; tricyclic antidepressant) and venlafaxine (VEN; 10 mg/kg/day, p.o.; dual serotonin/norepinephrine reuptake inhibitor) following restraint stress. The antioxidant status was investigated in the brain of these animals. The results evidenced a significant recovery in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione (GSH) levels by antidepressant treatments following a restraint stress-induced decline of these parameters. The severely accumulated lipid peroxidation product malondialdehyde (MDA) and protein carbonyl contents in stressed animals were significantly normalized by antidepressant treatments. The altered oxidative status is implicated in various aspects of cellular function affecting the brain. Thus, it is possible that augmentation of in vivo antioxidant defenses could serve as a convergence point for multiple classes of antidepressants as an important mechanism underlying the neuroprotective pharmacological effects of these drugs observed clinically in the treatment of various stress disorders. Consequently, pharmacological modulation of stress-induced oxidative damage as a possible stress-management approach should be an important avenue of further research.


Stress | 2009

Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats

Ayesha Zafir; Naheed Banu

Physical and psychological stressors not only enhance activity of the hypothalamo-pituitary–adrenocortical axis, but also cause oxidative damage by inducing an imbalance between the in vivo pro-oxidant and antioxidant status. The involvement of adrenal steroid stress hormones in oxidative damage associated with these stressors has not been extensively investigated. Therefore, this study was designed to probe any direct role of glucocorticoids on induction of oxidative processes by comparing the effects of low, intermediate and high doses of exogenously administered corticosterone, without other applied stressors, on a wide range of key components of the antioxidant defence system. The data presented here indicate a substantial decline in antioxidant defences by actions of corticosterone, evidenced by coordinate decreases in the activities in the brain, liver and heart of free-radical scavenging enzymes superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the non-enzymatic antioxidants glutathione (GSH) and serum urate. Also, lipid peroxidation and protein carbonyl contents, oxidative stress markers, were found to be significantly increased in brain, liver and heart. The compromised in vivo antioxidant status was strikingly analogous to the deleterious effects of restraint stress, indicating a direct effect of stress hormones on induction of oxidative damage during physical or psychological stress. A dose-dependent decrease of SOD and CAT, and increase in protein oxidation was observed between the high (40 mg/kg) and low (10 mg/kg) doses of corticosterone. The findings have fundamental implications for oxidative stress as a major pathological mechanism in the maladaptation to chronic stress. Thus, the study suggests that stress hormones have a causal role in impacting oxidative processes induced during the adaptive response. This may hold important implications for pharmacological interventions targeting cellular antioxidants as a promising strategy for protecting against oxidative insults in various psychiatric and non-psychiatric conditions induced by physical or psychological stress.


Drugs in R & D | 2005

Effects of antioxidant vitamins on glutathione depletion and lipid peroxidation induced by restraint stress in the rat liver.

S.M.Kashif R. Zaidi; Tariq Al-Qirim; Naheed Banu

AbstractBackground and aim: Stress as a cofactor has been reported to affect the progression and severity of several diseases. The influence of stress on the liver is of interest from the clinical point of view because stress plays a potential role in aggravating liver diseases in general and hepatic inflammation in particular, probably through generation of reactive oxygen species. The present study was undertaken to investigate the potential of the antioxidant vitamins A (retinol), E (tocopherol) and C (ascorbic acid) individually and in combination (vitamin E + C) to modulate restraint stress-induced oxidative changes. These effects were determined by measuring changes in hepatic levels of free radical scavenging enzymes such as superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase, as well as levels of total glutathione (GSH), malondialdehyde (MDA), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Methods: Immobilisation was achieved by placing the animals in wire mesh cages of their size. The rats were orally administered vitamins A, E and C individually and in combination (E + C) prior to and after 6 hours of immobilisation stress exposure. The hepatic levels of SOD, GST, catalase, GSH and MDA were determined by spectrophotometric methods. Liver SOD activity was assayed by monitoring the amount of enzyme required to inhibit autoxidation of pyrogallol by 50%. Hepatic GST was monitored by following the increase in absorbance at 340nm of CDNB-GSH conjugate generated due to GST catalysis between GSH and CDNB. Catalase activity in liver tissues was determined using peroxidase as the substrate. Lipid peroxidation was measured by determining the level of thiobarbituric acid reactive substances. ALT and AST were determined by commercial kits. Results: Six hours of immobilisation stress caused a decrease in liver levels of SOD (p = 0.001), catalase (p = 0.031), GST (p = 0.021) and GSH (0.013), while levels of MDA (p = 0.0015), AST (p = 0.05) and ALT (p = 0.046) were increased compared with non-stressed control rats. Both pre-vitamin stress and post-vitamin stress treatments either alone or in combination were associated with increased normalisation of these parameters towards control values, with post-vitamin treatment being the more effective of the two. Vitamins E and C individually were found to be more effective in restoring the endogenous antioxidant system than vitamin A. The combined vitamin (E + C) post-stress treatment was found to be effective but not additive in combating hepatic oxidative stress. The beneficial effects of these vitamin treatments were also reflected in reversions of altered AST and ALT levels towards their control values. Conclusion: Vitamins E or C alone or in combination can be given as prophylactic/therapeutic supplements for combating scavenging free radicals generated in liver tissue. This approach may reduce oxidative stress caused by diseases such as cirrhosis.


Stress | 2010

Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress.

Ausaf Ahmad; Naila Rasheed; Naheed Banu; Gautam Palit

Stress plays a key role in the induction of various clinical disorders by altering monoaminergic response and antioxidant defenses. In the present study, alterations in the concentrations of dopamine (DA), serotonin (5-HT) and their metabolites, and simultaneous changes in the antioxidant defense system and lipid peroxidation in different brain regions (frontal cortex, striatum, and hippocampus) were investigated immediately and 24 h after exposure to chronic unpredictable stress (CUS). CUS involved subjecting Sprague–Dawley rats to two different types of stressors varying from mild to severe intensity every day in an unpredictable manner, over a period of 7 days. CUS significantly decreased DA and 5-HT concentrations, with increased DA turnover ratios in the selected brain regions. In the frontal cortex and striatum, DA metabolite concentrations were increased; however, in the hippocampus they remained unaltered. Further, a decrease of 5-hydroxyindoleacetic acid content was observed in the frontal cortex and striatum, with no significant alteration in the hippocampus. CUS also reduced the activities of superoxide dismutase and catalase, with increased lipid peroxidation and decreased glutathione levels in the selected brain regions. Glutathione peroxidase activity was increased in the frontal cortex and hippocampus only. The pattern of CUS-induced monoamine and oxidative changes immediately after the last stressor and 24 h later were similar when compared with the control group, indicating that the observed changes were due to the chronic exposure to the various stressors and were not merely acute effects of the last stressor. The altered redox state in the striatum and frontal cortex might be related to the perturbed DA and/or 5HT levels, while the hippocampus seems to be less influenced by CUS in terms of monoamine metabolite changes. These results suggest that the perturbed monoamine levels could interact with the oxidative load during CUS. Hence, the current study has implications for pharmacological interventions targeting both central monoamines and cellular antioxidants as a potential stress management strategy for protecting against central stress-induced disorders.


Journal of Ethnopharmacology | 2002

Effect of khat, its constituents and restraint stress on free radical metabolism of rats.

Tariq Al-Qirim; Moyad Shahwan; Kashif R. Zaidi; Qamar Uddin; Naheed Banu

The leaves of khat (Catha edulis) are found to have stimulating and pleasurable effect and are chewed habitually by people of East Africa and Arabian Peninsula. Due to various toxic and psychostimulative effect of khat the present study was undertaken to evaluate the effect of intragastric khat alone or its major constituents flavonoids/alkaloids administration and before and after 4 h of immobilization stress in terms of alteration of free radical scavenging/metabolizing enzymes, uric acid and glucose in rats. Oral khat, alkaloid administration or 4 h restraint stress resulted in the decrease of the circulating levels of superoxide dismutase, catalase, glutathione-S-transferase and glucose with enhanced uric acid concentrations as compared with control rats. Oral treatment with flavonoid fraction of khat was found to enhance the activities of GST and catalase but showed no effect on SOD while the level of glucose was decreased and uric acid increased. The levels of these biochemical parameters were more altered in post stress khat/alkaloid treated rats than pre stress khat/alkaloid treated rats. The alteration in the levels of SOD, GST, catalase and uric acid in the pre stress khat treated rats were comparable with that of khat alone, except the level of glucose which was further decreased in pre stress khat treated rats. The flavonoid fraction of khat reduced the stress induced oxidative stress in terms of above mentioned biochemical parameters. The present study suggests that khat alone or khat/alkaloid consumption preceding stress may significantly decrease the levels of free radical metabolizing/scavenging enzymes and glucose leading to enhanced free radical concentration and toxicity of khat, which could be due to its alkaloid fraction as flavonoids were found to show antioxidant properties for oxidative stress generated during restraint stress.


Journal of Nutritional Biochemistry | 2003

Modulation of restraint stress induced oxidative changes in rats by antioxidant vitamins

S.M. Kashif; R. Zaidi; Tariq Al-Qirim; Nasrul Hoda; Naheed Banu

In the present study we examined immobilization stress-induced antioxidant defense changes in rat plasma and also observed the antioxidant effects of pre and post vitamins A, E and C administration (15 mg/Kg of body weight) individually and in combination (vit E + C) on these alterations.Following immobilization stress the circulating activities of superoxide dismutase, catalase and glutathione-S-transferase were decreased, while the level of thiobarbituric acid reactive substances (TBARS) was increased as compared to non-stressed control rats. Post treatment with individual vitamins A, E and C (after exposure to stress) resulted in a less marked alteration of plasma TBARS levels and activities of SOD, GST and catalase as compared to pre vitamin stress or stress alone treatments. Both pre and post vitamin treatments were effective in preventing stress induced derangement of free radical metabolism with a relative dominance by latter. The combined treatment with vitamin E and C did not show any additive antioxidant effect on restraint stress induced altered free radical metabolism, rather a predominant effect similar to vitamin E alone was observed. The prevention of oxidative stress generated in response to restraint stress by the vitamins can be summarized as: vitamin (E + C) i.e. vit E > vit C > vit A, thus combined vitamin (E + C) treatment though showed maximum preventive effect, but was similar to vitamin E treatment alone, in terms of the circulating activities of SOD, GST, catalase and TBARS levels.


Journal of Clinical Pharmacy and Therapeutics | 2012

Effect of vitamins C and E on antioxidant status of breast‐cancer patients undergoing chemotherapy

Nida Suhail; Nayeem Bilal; Husain Yar Khan; S. Hasan; S. Sharma; F. Khan; T. Mansoor; Naheed Banu

What is known and Objective:  Reactive oxygen/nitrogen species generated by antineoplastic agents are prime suspects for the toxic side‐effects of acute or chronic chemotherapy. The present study was undertaken to test whether vitamins C and E (VCE) supplementation protect against some of the harmful effects of commonly used anticancer drugs in breast‐cancer patients.


Canadian Journal of Neurological Sciences | 2012

Brain Region Specific Monoamine and Oxidative Changes During Restraint Stress

Ausaf Ahmad; Naila Rasheed; Ghulam Md Ashraf; Rajnish Kumar; Naheed Banu; Farah Khan; Muneera Al-Sheeha; Gautam Palit

BACKGROUND AND PURPOSE Stress-induced central effects are regulated by brain neurotransmitters, glucocorticoids and oxidative processes. Therefore, we aimed to evaluate the simultaneous alterations in the monoamine and antioxidant systems in selected brain regions (frontal cortex, striatum and hippocampus) at 1 hour (h) and 24h following the exposure of restraint stress (RS), to understand their initial response and possible crosstalk. METHODS AND RESULTS RS (150 min immobilization) significantly increased the dopamine levels in the frontal cortex and decreased them in the striatum and hippocampus, with selective increase of dopamine metabolites both in the 1h and 24h RS groups compared to control values. The serotonin and its metabolite levels were significantly increased in both time intervals, while noradrenaline levels were decreased in the frontal cortex and striatum only. The activities of superoxide dismutase, glutathione peroxidase and the levels of lipid peroxidation were significantly increased with significant decrease of glutathione levels in the frontal cortex and striatum both in the 1h and 24h RS groups. There was no significant change in the catalase activity in any group. In the hippocampus, the glutathione levels were significantly decreased only in the 1h RS group. CONCLUSIONS Our study implies that the frontal cortex and striatum are more sensitive to oxidative burden which could be related to the parallel monoamine perturbations. This provides a rational look into the simultaneous compensatory central mechanisms operating during acute stress responses which are particular to precise brain regions and may have long lasting effects on various neuropathological alterations.


Phytomedicine | 2012

Novel Ocimumoside A and B as anti-stress agents: modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats.

Ausaf Ahmad; Naila Rasheed; Prasoon Gupta; Seema Singh; Kiran B. Siripurapu; Ghulam Md Ashraf; Rajnish Kumar; Kailash Chand; Rakesh Maurya; Naheed Banu; Muneera Al-Sheeha; Gautam Palit

Therapies targeting central stress mechanisms are fundamental for the development of successful treatment strategies. Ocimum sanctum (OS) is an Indian medicinal plant traditionally used for the treatment of various stress-related conditions. Previously, we have isolated and characterized three OS compounds; Ocimarin, Ocimumoside A and Ocimumoside B. However, their role in modulating chronic stress-induced central changes is unexplored. Thus, in the present study the efficacy of these OS compounds have been evaluated on the chronic unpredictable stress (CUS)-induced alterations in the monoaminergic and antioxidant systems in the frontal cortex, striatum and hippocampus, along with the changes in the plasma corticosterone levels. CUS (two different types of stressors daily for seven days) resulted in a significant elevation of plasma corticosterone level, which was reversed to control levels by pretreatment with Ocimumoside A and B (40 mg/kg p.o.), while Ocimarin showed no effect. The levels of NA, DA and 5-HT were significantly decreased in all the three brain regions by CUS, with a selective increase of DA metabolites. A significant decrease in the glutathione (GSH) content, the activities of superoxide dismutase and catalase with a significant increase in the glutathione peroxidase activity and lipid peroxidation was observed in all the three regions of the brain by CUS. The OS compounds alone did not cause any significant change in the baseline values of these parameters. However, Ocimumoside A and B (40 mg/kg body p.o.) attenuated these CUS-induced alterations with an efficacy similar to that of standard anti-stress (Panax quinquefolium; 100 mg/kg p.o.) and antioxidant (Melatonin; 20 mg/kg i.p.) drugs. While, Ocimarin failed to modulate these CUS-induced alterations. Therefore, this is the first report which identified the anti-stress activity of novel Ocimumoside A and B at the level of central monoamines and antioxidant properties, implicating their therapeutic importance in the prevention of stress-related disorders.


FEBS Letters | 2006

Prior exposure to restraint stress enhances 7,12‐dimethylbenz(a)anthracene (DMBA) induced DNA damage in rats

Irfana Muqbil; Asfar S. Azmi; Naheed Banu

Over the years, several lines of evidence have emerged supporting the role of stress in the development and progression of cancer. Stress can cause an increase in the production of reactive oxygen species (ROS) and decrease in the in vivo antioxidant defense systems. A ROS‐induced DNA damage in peripheral lymphocytes, liver and skin cells may be revealed by Comet assay. To test whether DNA is damaged by stress/DMBA/stress and DMBA, rats were exposed to multiple doses of DMBA in the presence and absence of restraint stress, and DNA damage was evaluated. Insignificant differences were detected in all the three cells tested (peripheral lymphocytes, liver and skin cells) between control and stress treatment in terms of frequencies of damaged DNA. The extent of DNA migration was enhanced in DMBA treated rats in a dose dependent manner. Pre‐stress DMBA treatment showed still higher frequencies of damage in comparison with control, stress alone or DMBA alone groups. Thus, prior exposure to stress clearly enhanced the DMBA induced DNA damage, especially so in the skin cells (target organ of the carcinogen application) than liver and peripheral lymphocytes as observed on the basis of the extent of DNA migration (tail DNA) during single cell gel electrophoresis.

Collaboration


Dive into the Naheed Banu's collaboration.

Top Co-Authors

Avatar

Ausaf Ahmad

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nayeem Bilal

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Nida Suhail

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Shirin Hasan

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gautam Palit

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tariq Al-Qirim

Al-Zaytoonah University of Jordan

View shared research outputs
Researchain Logo
Decentralizing Knowledge