Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nahid Akhtar is active.

Publication


Featured researches published by Nahid Akhtar.


Arthritis & Rheumatism | 2010

MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes.

Nahid Akhtar; Zafar Rasheed; Sangeetha Ramamurthy; Arivarasu N Anbazhagan; Frank R. Voss; Tariq M. Haqqi

OBJECTIVEnAberrant posttranscriptional regulation of matrix metalloproteinases (MMPs) by microRNA has emerged as an important factor in human diseases. The aim of this study was to determine whether the expression of MMP-13 in human osteoarthritis (OA) chondrocytes is regulated by microRNA.nnnMETHODSnChondrocytes were stimulated with interleukin-1beta (IL-1beta) in vitro. Total RNA was prepared using TRIzol reagent. Polymerase chain reaction (PCR)-based arrays were used to determine the expression profile of 352 human microRNA. Gene expression was quantified using TaqMan assays, and microRNA targets were identified using bioinformatics. Transfection with reporter construct and microRNA mimic was used to verify suppression of target messenger RNA (mRNA). Gene expression of argonaute and Dicer was determined by reverse transcription-PCR, and expression of protein was determined by immunoblotting. The role of activated MAP kinases (MAPKs) and NF-kappaB was evaluated using specific inhibitors.nnnRESULTSnIn IL-1beta-stimulated OA chondrocytes, 42 microRNA were down-regulated, 2 microRNA were up-regulated, and the expression of 308 microRNA remained unchanged. In silico analysis identified a sequence in the 3-untranslated region (3-UTR) of MMP-13 mRNA complementary to the seed sequence of microRNA-27b (miR-27b). Increased expression of MMP-13 correlated with down-regulation of miR-27b. Overexpression of miR-27b suppressed the activity of a reporter construct containing the 3-UTR of human MMP-13 mRNA and inhibited the IL-1beta-induced expression of MMP-13 protein in chondrocytes. NF-kappaB and MAPK activation down-regulated the expression of miR-27b.nnnCONCLUSIONnOur data demonstrated the expression of miR-27b in both normal and OA chondrocytes. Furthermore, IL-1beta-induced activation of signal transduction pathways associated with the expression of MMP-13 down-regulated the expression of miR-27b. Thus, miR-27b may play a role in regulating the expression of MMP-13 in human chondrocytes.


Rheumatology | 2011

Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes

Zafar Rasheed; Nahid Akhtar; Tariq M. Haqqi

OBJECTIVEnTo investigate whether advanced glycation end products (AGEs) induce the expression of IL-6 and IL-8 through the receptor for AGEs (RAGE)-activated pathways in human OA chondrocytes.nnnMETHODSnOA chondrocytes were stimulated with AGE-modified BSA (AGE-BSA). Gene expression of IL-6 and IL-8 was quantified by TaqMan assays and the production was determined using ELISAs. Immunoblotting was used to analyse the activation of mitogen-activated protein kinases (MAPKs) and the degradation of IκBα. Activation of NF-κB was determined using an ELISA. Pharmacological studies to elucidate the involved pathways were executed using transfection with small interfering RNAs (siRNAs), inhibitors of MAPKs and NF-κB.nnnRESULTSnAGE-BSA induced the expression of IL-6 and IL-8 in OA chondrocytes, which was inhibited by pre-treatment with soluble RAGE (sRAGE) or RAGE knockdown by siRNAs. Treatment with SB202190 (p38-MAPK inhibitor) or PD98059 (ERK inhibitor) inhibited AGE-BSA-induced IL-6 and IL-8 expression. However, SP600125 (JNK inhibitor) had no effect on AGE-BSA-induced IL-6 expression but inhibited the expression of IL-8. Treatment with NF-κB inhibitors suppressed AGE-BSA-induced IL-6 and IL-8 expression.nnnCONCLUSIONSnThis is the first study to demonstrate that AGEs induce the expression of IL-6 and IL-8 in OA chondrocytes. A novel finding of our studies is that in OA chondrocytes, AGE-BSA-induced expression of IL-6, but not of IL-8, was independent of the JNK pathway. Activation of NF-κB was an absolute requirement for both IL-6 and IL-8 expression. These results demonstrate that AGE-BSA-induced expression of IL-6 and IL-8 via RAGE is mediated through different MAPK signalling pathways in OA and possibly in other degenerative diseases.


Life Sciences | 2010

Green tea polyphenol epigallocatechi3-gallate: inflammation and arthritis.

Rashmi Singh; Nahid Akhtar; Tariq M. Haqqi

A number of factors including inflammation and oxidative stress are believed to play a role in the development of chronic joint diseases. Green tea has become a popular drink and is consumed throughout the world. Extracts of green tea and polyphenols present therein have been shown to inhibit the inflammatory responses in vitro in different cell types and the development of arthritis in animal model studies. There is considerable evidence that (-)-epigallocatechin-3-gallate (EGCG), the predominant green tea polyphenol which mimic its effects, inhibits enzyme activities and signal transduction pathways that play important roles in inflammation and joint destruction in arthritis. After oral consumption EGCG become bioavailable and proteomic studies suggest that EGCG may directly interact with a large set of protein targets and alter the physiological response of the cells. Taken together these and other studies identify and support the use of EGCG as a possible chemopreventive agent with a potential to inhibit the development of arthritis. Here we review the biological effects of EGCG in an attempt to understand its pivotal molecular targets that directly affect the inflammation and joint destruction process for prevention and/or for the development of new therapeutics for arthritis in humans.


Arthritis Research & Therapy | 2009

Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-α and matrix metalloproteinase-13 in human chondrocytes

Zafar Rasheed; Arivarasu N Anbazhagan; Nahid Akhtar; Sangeetha Ramamurthy; Frank R. Voss; Tariq M. Haqqi

IntroductionThe major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFα and MMP-13 in human OA chondrocytes.MethodsHuman chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFα and MMP-13 was measured by quantitative RT-PCR. TNFα protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-κB. DNA binding activity of NF-κB p65 was determined using a highly sensitive and specific ELISA. IκB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography.ResultsEGCG significantly decreased AGE-stimulated gene expression and production of TNFα and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFα and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKβ kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm.ConclusionsThese novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE-mediated activation and the catabolic response in human chondrocytes.


Annals of the Rheumatic Diseases | 2012

MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes.

Nahid Akhtar; Tariq M. Haqqi

Objective Cyclooxygenase-2 (COX-2) expression is associated with the pathogenesis of chronic inflammation and pain in osteoarthritis (OA). A study was undertaken to determine whether interleukin-1β (IL-1β)-mediated induction of COX-2 can be regulated by microRNAs (miRNAs) in OA. Methods Human chondrocytes were stimulated with IL-1β in vitro. Total RNA was prepared using Trizol reagent. Gene expression was quantified using TaqMan Assays and miRNA targets were identified using bioinformatics. Transfection with reporter construct and premiRNA and antimiRNA was employed to verify suppression of target mRNA. Expression of COX-2 proteins was determined by immunoblotting. The role of activated p38-MAPKs was evaluated using specific inhibitor. Results The 3′UTR of COX-2 mRNA contained the ‘seed-matched’ sequences for miR-199a* and miR-101_3. Increased expression of COX-2 correlated with the downregulation of miR-199a* and miR-101_3 in IL-1β-stimulated normal and OA chondrocytes. miR-199a* directly suppressed the luciferase activity of a COX-2 3′UTR reporter construct and inhibited the IL-1β-induced expression of COX-2 protein in OA chondrocytes. Modulation of miR-199a* expression also caused significant inhibition of IL-1β-induced upregulation of mPGES1 and prostaglandin E2 production in OA chondrocytes. Activation of p38-MAPK downregulated the expression of miR-199a* and induced COX-2 expression. Treatment with antimiR-101_3 increased COX-2 expression in IL-1β-stimulated chondrocytes, but overexpression of miR-101_3 had no significant effect on COX-2 protein expression. Conclusions miR-199a* is a direct regulator of COX-2 expression in OA chondrocytes. IL-1β-induced activation of p38-MAPK correlates inversely with miR199a* expression levels. miR-199a* may be an important regulator of human cartilage homeostasis and a new target for OA therapy.


Arthritis Research & Therapy | 2011

Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes

Nahid Akhtar; Tariq M. Haqqi

IntroductionEpigallocatechin-3-gallate (EGCG) is a bioactive polyphenol of green tea and exerts potent anti-inflammatory effects by inhibiting signaling events and gene expression. Interleukin-1beta (IL-1β) is the principal cytokine linked to cartilage degradation in osteoarthritis (OA). The objective of this study was to evaluate the global effect of EGCG on IL-1β-induced expression of proteins associated with OA pathogenesis in human chondrocytes.MethodsPrimary OA chondrocytes were pretreated with EGCG (10 to 100 uM) and then stimulated with IL-1β (5 ng/ml) for 24 hours. Culture supernatants were incubated with cytokine antibody arrays and immunoreactive proteins (80 proteins) were visualized by enhanced chemiluminiscence. Effect of EGCG on IL-1β-induced expression of 18 selected genes was verified by Real time-PCR and effect on IL-6, IL-8 and tumor necrosis factor-alpha (TNF-α) production was determined using specific ELISAs. Western immunoblotting was used to analyze the effect of EGCG on the interleukin-1 receptor-associated kinase 1 (IRAK-1) and TNF receptor-associated factor 6 (TRAF-6) proteins in IL-1β-stimulated chondrocytes. The role of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinases (MAPKs) in the regulation of selected genes and the mechanism involved in EGCG mediated modulation of these genes was determined by using specific inhibitors for NF- κB (MG132) and MAPKs (p38-MAPK, SB202190; JNK-MAPK, SP600125, ERK-MAPK, PD98059).ResultsOut of 80 proteins present on the array, constitutive expression of 14% proteins was altered by EGCG treatment. No significant stimulatory effect was observed on the proteins associated with cartilage anabolic response. Stimulation with IL-1β enhanced the expression of 29 proteins. Expression of all 29 proteins up-regulated by IL-1β was found to be suppressed by EGCG. EGCG also inhibited the expression of the signaling intermediate TRAF-6 at 50 and 100 uM concentrations (P < 0.05). Our results identified several new targets of EGCG, including epithelial neutrophil activating peptide-78 (ENA-78), granulocyte macrophage colony stimulation factor (GM-CSF), growth- related oncogene (GRO), GRO-α, IL-6, IL-8, monocyte chemotactic protein-1 (MCP-1), MCP-3, macrophage inflammatory protein-1beta (MIP-1β), granulocyte chemotactic protein-2 (GCP-2), MIP-3alpha, interferon-gamma-inducible protein-10 (IP-10), nucleosome assembly protein-2 (NAP-2) and leukemia inhibitory factor (LIF). The inhibitory effects of EGCG were mainly mediated by inhibiting the activation of NF-κB and c-Jun N-terminal Kinase (JNK)-MAPK in human chondrocytes.ConclusionsOur results suggest that the potential of EGCG in OA treatment/prevention may be related to its ability to globally suppress the inflammatory response in human chondrocytes. These results identify additional new targets of EGCG and advocate that EGCG may be a potent chondroprotective agent in OA.


Life Sciences | 2010

Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis

Rashmi Singh; Nahid Akhtar; Tariq M. Haqqi

A number of factors including inflammation and oxidative stress are believed to play a role in the development of chronic joint diseases. Green tea has become a popular drink and is consumed throughout the world. Extracts of green tea and polyphenols present therein have been shown to inhibit the inflammatory responses in vitro in different cell types and the development of arthritis in animal model studies. There is considerable evidence that (-)-epigallocatechin-3-gallate (EGCG), the predominant green tea polyphenol which mimic its effects, inhibits enzyme activities and signal transduction pathways that play important roles in inflammation and joint destruction in arthritis. After oral consumption EGCG become bioavailable and proteomic studies suggest that EGCG may directly interact with a large set of protein targets and alter the physiological response of the cells. Taken together these and other studies identify and support the use of EGCG as a possible chemopreventive agent with a potential to inhibit the development of arthritis. Here we review the biological effects of EGCG in an attempt to understand its pivotal molecular targets that directly affect the inflammation and joint destruction process for prevention and/or for the development of new therapeutics for arthritis in humans.


Therapeutic Advances in Musculoskeletal Disease | 2012

Current nutraceuticals in the management of osteoarthritis: a review:

Nahid Akhtar; Tariq M. Haqqi

Osteoarthritis (OA) is a progressive degenerative joint disease that has a major impact on joint function and quality of life. Nutraceuticals and dietary supplements derived from herbs have long been used in traditional medicine and there is considerable evidence that nutraceuticals may play an important role in inflammation and joint destruction in OA. We review the biological effects of some medicinal fruits and herbs – pomegranate, green tea, cat’s claw, devil’s claw, ginger, Indian olibaum, turmeric and ananas – in an attempt to understand the pivotal molecular targets involved in inflammation and the joint destruction process and to summarize their toxicities and efficacy for OA management. So far there is insufficient reliable evidence on the effectiveness of ginger, turmeric and ananas. Pomegranate and green tea only have preclinical evidence of efficacy due to the lack of clinical data. In vivo and clinical studies are required to understand their targets and efficacy in OA. Limited in vitro and in vivo evidence is available for cat’s claw and Indian olibaum. More extensive studies are required before long-term controlled trials of whole cat’s claw and Indian olibaum extracts, or isolated active compounds, are carried out in patients with OA to determine their long-term efficacy and safety. Devil’s claw has not been rigorously tested to determine its antiarthritic potential in in vitro and in vivo models. There is strong clinical evidence of the effectiveness of devil’s claw in pain reduction. However, high-quality clinical trials are needed to determine its effectiveness. No serious side effects have been reported for any fruits and herbs. Overall, these studies identify and support the use of nutraceuticals to provide symptomatic relief to patients with OA and to be used as adjunct therapy for OA management. More high-quality trials are needed to provide definitive answers to questions related to their efficacy and safety for OA prevention and/or treatment.


Arthritis Research & Therapy | 2010

Pomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes

Zafar Rasheed; Nahid Akhtar; Tariq M. Haqqi

IntroductionPomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1β (IL-1β) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. In this study we determined the effect of a standardized pomegranate extract (PE) on the IL-1β-induced activation of MKK3/6, p38-MAPK isoforms and the activation of transcription factor RUNX-2 in primary human OA chondrocytes.MethodsHuman chondrocytes were derived from OA cartilage by enzymatic digestion, treated with PE and then stimulated with IL-1β. Gene expression of p38-MAPK isoforms was measured by RT-PCR. Western immunoblotting was used to analyze the activation of MAPKs. Immunoprecipitation was used to determine the activation of p38-MAPK isoforms. DNA binding activity of RUNX-2 was determined using a highly sensitive and specific ELISA. Pharmacological studies to elucidate the involved pathways were executed using transfection with siRNAs.ResultsHuman OA chondrocytes expressed p38-MAPK isoforms p38α, -γ and -δ, but not p38β. IL-1β enhances the phosphorylation of the p38α-MAPK and p38γ-MAPK isoforms but not of p38δ-MAPK isoform in human OA chondrocytes. Activation of p38-MAPK in human OA chondrocytes was preferentially mediated via activation of MKK3. In addition, we also demonstrate that polyphenol rich PE inhibited the IL-1β-induced activation of MKK3, p38α-MAPK isoform and DNA binding activity of the transcription factor RUNX-2.ConclusionsOur results provide an important insight into the molecular basis of the reported cartilage protective and arthritis inhibitory effects of pomegranate extract. These novel pharmacological actions of PE on IL-1β stimulated human OA chondrocytes impart a new suggestion that PE or PE-derived compounds may be developed as MKK and p38-MAPK inhibitors for the treatment of OA and other degenerative/inflammatory diseases.


Journal of Pharmacology and Experimental Therapeutics | 2010

Butrin, Isobutrin, and Butein from Medicinal Plant Butea monosperma Selectively Inhibit Nuclear Factor-κB in Activated Human Mast Cells: Suppression of Tumor Necrosis Factor-α, Interleukin (IL)-6, and IL-8

Zafar Rasheed; Nahid Akhtar; Abubakar Khan; Khursheed A. Khan; Tariq M. Haqqi

Activation of mast cells in rheumatoid synovial tissue has often been associated with tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 production and disease pathogenesis by adjacent cell types. Butea monosperma (BM) is a well known medicinal plant in India and the tropics. The aim of this study was to examine whether a standardized extract of BM flower (BME) could inhibit inflammatory reactions in human mast cells (HMC) using activated HMC-1 cells as a model. Four previously characterized polyphenols—butrin, isobutrin, isocoreopsin, and butein—were isolated from BME by preparative thin layer chromatography, and their purity and molecular weights were determined by liquid chromatography/mass spectrometry analysis. Our results showed that butrin, isobutrin, and butein significantly reduced the phorbol 12-myristate 13-acetate and calcium ionophore A23187-induced inflammatory gene expression and production of TNF-α, IL-6, and IL-8 in HMC-1 cells by inhibiting the activation of NF-κB. In addition, isobutrin was most potent in suppressing the NF-κB p65 activation by inhibiting IκBα degradation, whereas butrin and butein were relatively less effective. In vitro kinase activity assay revealed that isobutrin was a potent inhibitor of IκB kinase complex activity. This is the first report identifying the molecular basis of the reported anti-inflammatory effects of BME and its constituents butrin, isobutrin, and butein. The novel pharmacological actions of these polyphenolic compounds indicate potential therapeutic value for the treatment of inflammatory and other diseases in which activated mast cells play a role.

Collaboration


Dive into the Nahid Akhtar's collaboration.

Top Co-Authors

Avatar

Tariq M. Haqqi

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rashmi Singh

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar

Frank R. Voss

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Sangeetha Ramamurthy

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abubakar Khan

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge