Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nahid Ali is active.

Publication


Featured researches published by Nahid Ali.


Journal of Immunology | 2007

IL-10- and TGF-β-Mediated Susceptibility in Kala-azar and Post-kala-azar Dermal Leishmaniasis: The Significance of Amphotericin B in the Control of Leishmania donovani Infection in India

Samiran Saha; Smriti Mondal; Rajesh Ravindran; Swati Bhowmick; Dolanchampa Modak; Sudeshna Mallick; Mehboobar Rahman; Sourjya Kar; Rama Prosad Goswami; Subhasis K Guha; Netai Pramanik; Bibhuti Saha; Nahid Ali

Visceral leishmaniasis (VL) or kala-azar is known to be associated with a mixed Th1-Th2 response, and effective host defense requires the induction of IFN-γ and IL-12. We address the role of the differential decline of IL-10 and TGF-β in response to sodium antimony gluconate (SAG) and amphotericin B (AmB), the therapeutic success of SAG and AmB in Indian VL, and the significance of IL-10 and TGF-β in the development and progression of post-kazla-azar dermal leishmaniasis (PKDL). In the active disease, PBMC from VL patients showed suppressed Ag-specific lymphoproliferation, IFN-γ and IL-12 production, and elevation of IL-10 and TGF-β. Cure corresponded with an elevation in IFN-γ and IL-12 production and down-regulation of IL-10 and TGF-β. Both CD4+ and CD8+ T cells were involved in IFN-γ and IL-10 production. Interestingly, the retention and maintenance of residual IL-10 and TGF-β in some SAG-treated individuals and the elevation of IL-10 and TGF-β in PKDL, a sequel to kala-azar, probably reflects the role of these cytokines in reactivation of the disease in the form of PKDL. Contrastingly, AmB treatment of VL resulted in negligible TGF-β levels and absolute elimination of IL-10, reflecting the better therapeutic activity of AmB and its probable role in the recent decline in PKDL occurrences in India. Moreover, elucidation of immune responses in Indian PKDL patients revealed a spectral pattern of disease progression where disease severity could be correlated inversely with lymphoproliferation and directly with TGF-β, IL-10, and Ab production. In addition, the enhancement of CD4+CD25+ T cells in active VL, their decline at cure, and reactivation in PKDL suggest their probable immunosuppressive role in these disease forms.


Infection and Immunity | 2002

Characterization of Leishmania donovani Antigens Encapsulated in Liposomes That Induce Protective Immunity in BALB/c Mice

Farhat Afrin; Ravindran Rajesh; Khairul Anam; Meenakshisundram Gopinath; Swati Pal; Nahid Ali

ABSTRACT Leishmania donovani promastigote membrane antigens (LAg) encapsulated in positively charged liposomes have been found to induce very significant levels of protection against experimental visceral leishmaniasis. The protectively immunized animals exhibited profound delayed-type hypersensitivity and antibody responses. The extent of protection induced by the same antigens, however, varied depending on the charge of the vesicles, with maximum induction by positively charged liposomes, followed by neutral liposomes and last negatively charged liposomes. Characterization of LAg and LAg entrapped in liposomes of different charges by Western blot analysis revealed the immunodominance of gp63 in all three vaccine preparations. The strong reactivity of antigens in a restricted antigen profile that included, in addition to gp63, 72-, 52-, 48-, 45-, 39-, and 20-kDa components in neutral and positively charged liposomes contrasted with the reactivity of a greater number of LAg components in negatively charged liposomes. Resistance to visceral leishmaniasis appears to depend on the immunity induced by gp63 and a few select antigens in association with the right liposomes. A striking similarity between the immunogenic profile of partially purified soluble antigens and that of LAg in neutral and positively charged liposomes suggests the potentiality of these antigens in future vaccine studies of L. donovani.


Infection and Immunity | 2008

gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani.

Swati Bhowmick; Rajesh Ravindran; Nahid Ali

ABSTRACT Visceral leishmaniasis is deadly if not treated, and development of a vaccine with long-term immunity remains a challenge. In this study, we showed that cationic distearoyl phosphatidylcholine (DSPC) liposomes, when used as vaccine adjuvant with the immunodominant 63-kDa glycoprotein (gp63) of Leishmania donovani promastigotes, induced significant protection against progressive visceral leishmaniasis in susceptible BALB/c mice. gp63 used without adjuvant elicited partial protection but in association with liposomes exhibited marked resistance in both the livers and spleens of the mice challenged 10 days after the last vaccination. The protective efficacy of liposomal gp63 vaccination was dose dependent, with 2.5 μg of protein showing optimal protection. The immunity conferred by this vaccine formulation was durable, as mice challenged 12 weeks after immunization were still protected, and the infection was controlled for at least 3 months postchallenge. Production of gamma interferon (IFN-γ) and interleukin-4 (IL-4) by splenic T cells, and of serum immunoglobulin G1 (IgG1) and IgG2a following immunization, suggested that a mixed Th1/Th2 response had been induced following immunization. However, control of disease progression and parasitic burden in mice vaccinated with gp63 in cationic DSPC liposomes was associated with enhancement of antigen-specific IFN-γ and downregulation of IL-4, demonstrating a Th1 bias. Long-term immunity elicited by this vaccine corresponded to, in addition to the presence of antigen-specific Th1, CD8+ T-cell responses. Our results demonstrated that stable cationic liposomes containing gp63 acted as a potent adjuvant for protein antigen to induce long-term protection against L. donovani that represents an alternative to DNA vaccination.


Expert Review of Anti-infective Therapy | 2010

Current diagnosis and treatment of visceral leishmaniasis

Smriti Mondal; Pradyot Bhattacharya; Nahid Ali

Human visceral leishmaniasis (VL), a potentially fatal disease, is most prevalent in the Indian subcontinent, East Africa and South America. Definite diagnosis and effective treatment are the primary needs for the control of VL. Diagnosis of VL has typically relied on microscopic examination of bone marrow/splenic aspirate, but serology and molecular methods are now better alternatives. The conventional drugs for treatment of VL have limitations including unresponsiveness, relapse, specific toxicities and parenteral administration lasting for long durations. Moreover, they are less effective in HIV–VL-coinfected patients. Registration of miltefosine and paromomycin, and preferential pricing of AmBisome has offered more choices for monotherapy and combination therapy for VL. Combination therapy will increase treatment efficacy and prevent the development of resistance. In addition, active case finding and vector control strategies will also have a positive impact in the control of VL. This article critically addresses the currently available diagnostic and treatment regimens for the control of VL.


Journal of Immunology | 2008

Complete Cure of Experimental Visceral Leishmaniasis with Amphotericin B in Stearylamine-Bearing Cationic Liposomes Involves Down-Regulation of IL-10 and Favorable T Cell Responses

Antara Banerjee; Manjarika De; Nahid Ali

Visceral leishmaniasis caused by Leishmania donovani is a life-threatening disease involving uncontrolled parasitization of liver, spleen, and bone marrow. Most available drugs are toxic. Moreover, relapse after seemingly successful therapy remains a chronic problem. In this study, we evaluated a new therapeutic approach based on combination of a low dose of amphotericin B (AmB) in association with suboptimum dose of stearylamine (SA)-bearing cationic liposomes, itself having leishmanicidal activity. We demonstrate that a single-shot therapy with this formulation caused clearance of parasites from liver and spleen below the level of detection in the selected piece of the organs of BALB/c mice. The combination was superior to free AmB and AmBisome for therapy, as well as for prevention of relapse and reinfection. Besides having better killing activity, AmB in SA liposomes, in contrast to AmBisome, maintained the immunomodulatory effect of free AmB on CD4+ and CD8+ T cells for IFN-γ production, at the same time reducing the toxic effects of the drug, reflected through decline in TNF-α. In addition, IL-10 was down-regulated to almost negligible levels, most efficiently through therapy with SA-bearing cationic liposomes-AmB. This IL-10-deficient environment of IFN-γ-secreting T cells probably up-regulated the enhanced IL-12 and NO production observed in splenic culture supernatants of these mice, correlating with prolonged disease suppression better than free AmB and AmBisome. The ability of the formulation to elicit protective immunity was reconfirmed in a prophylactic model. Our results emphasize the requirement of effective immune stimulation, additionally, by antileishmanials for persistent disease protection, demonstrated by this liposomal AmB formulation.


PLOS ONE | 2011

Potency, Efficacy and Durability of DNA/DNA, DNA/Protein and Protein/Protein Based Vaccination Using gp63 Against Leishmania donovani in BALB/c Mice

Saumyabrata Mazumder; Mithun Maji; Amrita Das; Nahid Ali

Background Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency, efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a susceptible murine model. Methods and Findings To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost (HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection. Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against Leishmania major infection. Conclusion/Significance HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in maintaining long-term immunity against intracellular pathogen like Leishmania.


Journal of Controlled Release | 2010

Comparison of liposome based antigen delivery systems for protection against Leishmania donovani.

Swati Bhowmick; Tuhina Mazumdar; Roma Sinha; Nahid Ali

Liposomes have been widely exploited as antigen delivery systems for a variety of diseases including leishmaniasis. These vesicles can be prepared in various ways which may affect the immunogenicity of the encapsulated antigens. In this study we compared the vaccine potentiality of three cationic formulations with Leishmania donovani promastigote membrane antigens (LAg) and the best vesicle was evaluated for long-term protection against experimental visceral leishmaniasis. We immunized mice with LAg encapsulated in multilamellar vesicles (MLV), dehydration-rehydration vesicles (DRV) and reverse-phase evaporation vesicles (REV) and challenged them with parasites ten days after vaccination. LAg in MLV or DRV induced almost complete protection, while LAg alone or entrapped in REV exhibited partial resistance. Protection observed with antigen incorporated MLV or DRV was predominantly Th1 as evidenced by elicitation of significantly high DTH, IgG2a antibodies and IFN-gamma. MLV encapsulated LAg demonstrated durable cell-mediated immunity and mice challenged ten weeks after vaccination could also resist experimental challenge strongly. Field trials of L. donovani vaccine were unsatisfactory mainly due to lack of an appropriate adjuvant. Cationic MLV when used as adjuvant with protein antigens induced sustained Th1 immunity. Adjuvant potential of cationic MLV can be utilized to design subunit vaccines.


Antimicrobial Agents and Chemotherapy | 2000

Antileishmanial Activities of Stearylamine-Bearing Liposomes

Tuhina Dey; Khairul Anam; Farhat Afrin; Nahid Ali

ABSTRACT Here we report the activity of liposomes comprising egg phosphatidylcholine (PC) and stearylamine (SA) against Leishmania donovani parasites. Both promastigotes and intracellular amastigotes in vitro and in vivo were susceptible to SA-PC liposomes. A single dose of 55 mg of SA-PC liposomes/animal could significantly reduce the hepatic parasite burden by 85 and 68% against recent and established experimental visceral leishmaniasis, respectively, suggesting their strong therapeutic potential.


Journal of Parasitology | 2005

Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens

Tuhina Mazumdar; Khairul Anam; Nahid Ali

In this study, we evaluate the effect of phospholipid on the adjuvanicity and protective efficacy of liposome vaccine carriers against visceral leishmaniasis (VL) in a hamster model. Liposomes prepared with distearyol derivative of l-α-phosphatidyl choline (DSPC) having liquid crystalline transition temperature (Tc) 54 C were as efficient as dipalmitoyl (DPPC) (Tc 41 C) and dimyristoyl (DMPC) (Tc 23 C) derivatives in their ability to entrap Leishmania donovani membrane antigens (LAg) and to potentiate strong antigen-specific antibody responses. However, whereas LAg in DPPC and DMPC liposomes stimulated inconsistent delayed type hypersensitivity (DTH) responses, strong DTH was observed with LAg in DSPC liposomes. The heightened adjuvant activity of DSPC liposomes corresponded with 95% protection, with almost no protectivity with LAg in DPPC and DMPC liposomes, 4 mo after challenge with L. donovani. These data demonstrate the superiority of DSPC liposomes for formulation of L. donovani vaccine. In addition, they demonstrate a correlation of humoral and cell-mediated immunity with protection against VL in hamsters.


Frontiers in Immunology | 2012

Vaccine development against Leishmania donovani

Amrita Das; Nahid Ali

Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for protection against this lethal infection.

Collaboration


Dive into the Nahid Ali's collaboration.

Top Co-Authors

Avatar

Khairul Anam

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Pradyot Bhattacharya

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Farhat Afrin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sudipta Bhowmick

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdus Sabur

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Md. Shadab

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Roma Sinha

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Sarfaraz Ahmad Ejazi

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Amrita Das

Indian Institute of Chemical Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge