Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nahid Azzouz is active.

Publication


Featured researches published by Nahid Azzouz.


Journal of Immunology | 2007

Activation of TLR2 and TLR4 by Glycosylphosphatidylinositols Derived from Toxoplasma gondii

Françoise Debierre-Grockiego; Marco A. Campos; Nahid Azzouz; Jörg C. Schmidt; Ulrike Bieker; Marianne Garcia Resende; Daniel Santos Mansur; Ralf Weingart; Richard R. Schmidt; Douglas T. Golenbock; Ricardo T. Gazzinelli; Ralph T. Schwarz

GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-α production by macrophages exposed to T. gondii GPIs. Importantly, TNF-α response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88−/− mice were more susceptible to death than wild-type (WT), TLR2−/−, TLR4−/−, TLR2/4−/−, and CD14−/− mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4−/−, but not TLR2−/−, TLR4−/−, and CD14−/−, mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-γ production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2−/− and TLR2/4−/− mice produced more IFN-γ than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.


Journal of Virology | 2005

Acylation-Mediated Membrane Anchoring of Avian Influenza Virus Hemagglutinin Is Essential for Fusion Pore Formation and Virus Infectivity

Ralf Wagner; Astrid Herwig; Nahid Azzouz; Hans-Dieter Klenk

ABSTRACT Attachment of palmitic acid to cysteine residues is a common modification of viral glycoproteins. The influenza virus hemagglutinin (HA) has three conserved cysteine residues at its C terminus serving as acylation sites. To analyze the structural and functional roles of acylation, we have generated by reverse genetics a series of mutants (Ac1, Ac2, and Ac3) of fowl plague virus (FPV) containing HA in which the acylation sites at positions 551, 559, and 562, respectively, have been abolished. When virus growth in CV1 and MDCK cells was analyzed, similar amounts of virus particles were observed with the mutants and the wild type. Protein patterns and lipid compositions, characterized by high cholesterol and glycolipid contents, were also indistinguishable. However, compared to wild-type virus, Ac2 and Ac3 virions were 10 and almost 1,000 times less infectious, respectively. Fluorescence transfer experiments revealed that loss of acyl chains impeded formation of fusion pores, whereas hemifusion was not affected. When the affinity to detergent-insoluble glycolipid (DIG) domains was analyzed by Triton X-100 treatment of infected cells and virions, solubilization of Ac2 and Ac3 HAs was markedly facilitated. These observations show that acylation of the cytoplasmic tail, while not necessary for targeting to DIG domains, promotes the firm anchoring and retention of FPV HA in these domains. They also indicate that tight DIG association of FPV HA is essential for formation of fusion pores and thus probably for infectivity.


Eukaryotic Cell | 2002

Synthesis of Chloroplast Galactolipids in Apicomplexan Parasites

Eric Maréchal; Nahid Azzouz; Cristiana Santos de Macedo; Maryse A. Block; Jean E. Feagin; Ralph T. Schwarz; Jacques Joyard

ABSTRACT Monogalactosyldiacylglycerol and digalactosyldiacylglycerol are major chloroplast lipids of algae and land plants and are synthesized within the plastid envelope. Here we report that in Toxoplasma gondii and Plasmodium falciparum lysates, radiolabeled UDP-galactose is incorporated into monogalactosylcerebrosides, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol due to distinct enzymological activities. Furthermore, DGDG is immunologically detected in apicomplexans.


International Journal for Parasitology | 2001

Identification and characterisation of Toxoplasma gondii protein farnesyltransferase

Mahasin Ibrahim; Nahid Azzouz; Peter Gerold; Ralph T. Schwarz

Prenylated proteins are involved in the regulation of DNA replication and cell cycling and have important roles in the regulation of cell proliferation. Protein farnesyltransferase and protein geranylgeranyltransferase are the two enzymes responsible for catalysing isoprene lipid modifications. Recently these enzymes have been targets for the development of cancer chemotherapeutics. Using metabolic labelling we identified isoprenylated proteins which suggests the presence of protein farnesyltransferase in Toxoplasma gondii. T. gondii protein farnesyltransferase is heat-labile and requires Mg(2+) and Zn(2+) ions for full activity. Peptidomimetic analogues as well as short synthetic peptides were tested in vitro as possible competitors for farnesyltransferase substrates. We found that the synthetic peptide (KTSCVIA) specifically inhibited T. gondiiprotein farnesyltransferase but not mammalian (HeLa cells) farnesyltransferase. Therefore this study suggests the possible development of specific inhibitors of T. gondiiprotein farnesyltransferase as an approach to parasitic protozoa therapy.


Biochimie | 2003

Inhibitors of glycosyl-phosphatidylinositol anchor biosynthesis

Cristiana Santos de Macedo; Hosam Shams-Eldin; Terry K. Smith; Ralph T. Schwarz; Nahid Azzouz

Glycosyl-phosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa such as Trypanosoma brucei, Leishmania major, Plasmodium falciparum and Toxoplasma gondii, and represent the major carbohydrate modification of many cell-surface parasite proteins. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. Therefore, the characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. In vitro and in vivo studies using sugars and substrate analogues as well as natural compounds have shown that it is possible to interfere with GPI biosynthesis at different steps in a species-specific manner. Here we review the recent and promising progress in the field of GPI inhibition.


International Journal for Parasitology | 2002

Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii

Nahid Azzouz; Beatrice Rauscher; Peter Gerold; Marie-France Cesbron-Delauw; Jean-François Dubremetz; Ralph T. Schwarz

Glycolipids are important components of cellular membranes involved in various biological functions. In this report, we describe the identification of the de novo synthesis of glycosphingolipids by Toxoplasma gondii tachyzoites. Parasite-specific glycolipids were identified by metabolic labelling of parasites with tritiated serine and galactose. These glycolipids were characterised as sphingolipids based on the labelling protocol and their insensitivity towards alkaline treatment. Synthesis of parasite glycosphingolipids were inhibited by threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol and L-cycloserine, two well-established inhibitors of de novo sphingolipid biosynthesis. The identified glycolipids were insensitive towards treatment with endoglycoceramidase II indicating that they might belong to globo-type glycosphingolipids. Taken together, we provide evidence for the first time that T. gondii is capable of synthesising glycosphingolipids de novo.


Infection and Immunity | 2006

Fatty Acids from Plasmodium falciparum Down-Regulate the Toxic Activity of Malaria Glycosylphosphatidylinositols

Françoise Debierre-Grockiego; Louis Schofield; Nahid Azzouz; Jörg C. Schmidt; Cristiana Santos de Macedo; Michael A. J. Ferguson; Ralph T. Schwarz

ABSTRACT Plasmodium falciparum malaria kills roughly 2.5 million people, mainly children, annually. Much of this mortality is thought to arise from the actions of a malarial toxin. This toxin, identified as glycosylphosphatidylinositol (GPI), is a major pathogenicity determinant in malaria. A malarial molecule, Pfj, labeled by [3H]glucosamine like the GPIs, was identified as a non-GPI molecule. Here we show that Pfj is able to down-regulate tumor necrosis factor alpha (TNF-α) production induced by the GPI of P. falciparum. Mass spectrometry analysis showed that Pfj was not a single molecule but represented a number of molecules. Separation methods, such as cation-exchange chromatography and thin-layer chromatography, were used to isolate and identify the following four main fatty acids responsible for the inhibitory effect on TNF-α production: myristic, pentadecanoic, palmitic, and palmitoleic acids. This regulatory effect on cytokine production suggests that there is balanced bioactivity for the different categories of malarial lipids.


Molecular and Biochemical Parasitology | 2002

The GPI1 homologue from Plasmodium falciparum complements a Saccharomyces cerevisiae GPI1 anchoring mutant.

Hosam Shams-Eldin; Nahid Azzouz; Mamdouh H. Kedees; Peter Orlean; Taroh Kinoshita; Ralph T. Schwarz

Glycosylphosphatidylinositol (GPI) represents an important anchoring molecule for cell surface proteins. The first step in its synthesis is the transfer of N-acetylglucosamine (GlcNAc) from UDP-N-acetylglucosamine to phosphatidylinositol (PI). This chemically simple step is genetically complex because three or four genes are required in both yeast (GPI1, GPI2 and GPI3) and mammals (GPI1, PIG A, PIG H and PIG C), respectively. Here, we report cloning of a Plasmodium falciparum (P. falciparum) homologue of GPI1 (PfGPI1). Analysis showed that P. falciparum Gpi1p is somewhat more similar to the yeast proteins than human Gpi1p, showing 26 and 20% amino acid sequence identity with the Saccharomyces cerevisiae and Homo sapiens proteins, respectively. Multiple sequence alignment demonstrates also that the C-terminal half GPI1 proteins is much better conserved than the N-terminal half. The P. falciparum Gpi1p has a calculated molecular weight of 65 kDa and a predicted potential tyrosine phosphorylation site. The potential tyrosine phosphorylation site seems to occur in all other known Gpi1 proteins. Like the other GPI1 proteins, the predictive software revealed the absence of targeting signals such as organelle transit peptides, DNA binding sites, or N-terminal secretory signals. Hydrophobicity plots revealed multiple hydrophobic regions that could function as transmembrane segments. The cloned P. falciparum GPI1 gene complemented a gpi1 yeast mutant.


Journal of Biological Chemistry | 2007

The Role of Inositol Acylation and Inositol Deacylation in the Toxoplasma gondii Glycosylphosphatidylinositol Biosynthetic Pathway

Terry K. Smith; Jürgen Kimmel; Nahid Azzouz; Hosam Shams-Eldin; Ralph T. Schwarz

Toxoplasma gondii is a ubiquitous parasitic protozoan that invades nucleated cells in a process thought to be in part due to several surface glycosylphosphatidylinositol (GPI)-anchored proteins, like the major surface antigen SAG1 (P30), which dominates the plasma membrane. The serine protease inhibitors phenylmethylsulfonyl fluoride and diisopropyl fluoride were found to have a profound effect on the T. gondii GPI biosynthetic pathway, leading to the observation and characterization of novel inositol-acylated mannosylated GPI intermediates. This inositol acylation is acyl-CoA-dependent and takes place before mannosylation, but uniquely for this class of inositol-acyltransferase, it is inhibited by phenylmethylsulfonyl fluoride. The subsequent inositol deacylation of fully mannosylated GPI intermediates is inhibited by both phenylmethylsulfonyl fluoride and diisopropyl fluoride. The use of these serine protease inhibitors allows observations as to the timing of inositol acylation and subsequent inositol deacylation of the GPI intermediates. Inositol acylation of the non-mannosylated GPI intermediate d-GlcNα1–6-d-myo-inositol-1-HPO4-sn-lipid precedes mannosylation. Inositol deacylation of the fully mannosylated GPI intermediate allows further processing, i.e. addition of GalNAc side chain to the first mannose. Characterization of the phosphatidylinositol moieties present on both free GPIs and GPI-anchored proteins shows the presence of a diacylglycerol lipid, whose sn-2 position contains almost exclusively an C18:1 acyl chain. The data presented here identify key novel inositol-acylated mannosylated intermediates, allowing the formulation of an updated T. gondii GPI biosynthetic pathway along with identification of the putative genes involved.


Experimental Parasitology | 2002

Plasmodium falciparum: glycosylation status of Plasmodium falciparum circumsporozoite protein expressed in the baculovirus system

Mamdouh H. Kedees; Nahid Azzouz; Peter Gerold; Hosam Shams-Eldin; Jahangir Iqbal; Volker Eckert; Ralph T. Schwarz

We expressed the main surface antigen of Plasmodium falciparum sporozoites, the circumsporozoite protein (CSP), in High Five (Trichoplusia ni) insect cells using the baculovirus system. Significant amounts of the recombinant protein could be obtained, as judged by SDS-PAGE, Western blot, and immunofluorescence analysis. The cellular localization for recombinant CSP was determined by immunofluorescence. The high fluorescence signal of the permeabilized cells, relative to that of fixed nonpermeabilized cells, revealed a clear intracellular localization of this surface antigen. Analysis of possible posttranslational modifications of CSP showed that this recombinant protein is only N-glycosylated in the baculovirus system. Although DNA-sequence analysis revealed a GPI-cleavage/attachment site, no GPI anchor could be demonstrated. These analyses show that the glycosylation status of this recombinant protein may not reflect its native form in P. falciparum. The impact of these findings on vaccine development will be discussed.

Collaboration


Dive into the Nahid Azzouz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry K. Smith

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge