Naho Yokota
Yokohama City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naho Yokota.
Journal of Thrombosis and Haemostasis | 2011
Wolfram Ruf; Jennifer Disse; Tatiana C. Carneiro-Lobo; Naho Yokota; Florence Schaffner
Summary. The close link between coagulation activation and clinical cancer is well established and recent progress has defined underlying molecular pathways by which tumour cells interact with the haemostatic system to promote cancer progression. Tumour type‐specific oncogenic transformations cause constitutive and hypoxia‐dependent upregulation of tissue factor (TF) in cancer cells, but TF expressed by vascular, stromal and inflammatory cells also contributes to the procoagulant character of the tumour microenvironment. A growing body of genetic and pharmacological evidence implicates signalling by protease activated receptors (PARs) and specifically by tumour cell‐expressed TF‐VIIa‐PAR2 in the induction of an array of proangiogenic and immune modulating cytokines, chemokines and growth factors. Specific inhibition of this pathway results in attenuated tumour growth and angiogenesis. PARs are increasingly recognised as targets for proteases outside the coagulation system and emerging evidence indicates that alternative protease signalling pathways synergise with the coagulation system to promote tumour growth, angiogenesis and metastasis. The elucidation of new therapeutic targets in tumour‐promoting protease signalling pathways requires new diagnostic approaches to identify patients that will benefit from tailored therapy targeting procoagulant or signalling aspects of the TF pathway.
Blood | 2010
Florence Schaffner; Henri H. Versteeg; Anja Schillert; Naho Yokota; Lars C. Petersen; Barbara M. Mueller; Wolfram Ruf
Constitutive expression of tissue factor (TF) by cancer cells triggers local activation of the coagulation cascade and promotes breast cancer progression through cell signaling involving protease activated receptor (PAR)2. In human breast cancer, TF and PAR2 are up-regulated and TF cytoplasmic domain phosphorylation is correlated with relapse. Here we show that cancer cell PAR2 signaling promotes angiogenesis independent of PAR2 phosphorylation at the recognized β-arrestin recruitment site. Similar to PAR2(-/-) mice, TF cytoplasmic domain-deleted (TF(ΔCT)) mice have delayed spontaneous breast cancer development in the polyoma middle T model. Simultaneous deletion of PAR2 in TF(ΔCT) mice did not further delay tumor appearance, consistent with overlapping roles of TF and PAR2 in promoting the angiogenic switch in early stages of breast cancer. In advanced carcinomas, tumor-associated macrophages were reduced in TF(ΔCT) and TF(ΔCT)/PAR2(-/-) mice, and increased tumor vessel diameters of TF(ΔCT) mice were partially reversed by PAR2-deficiency, indicating that the TF cytoplasmic domain has additional roles that are interdependent with PAR2 signaling in regulating host angiogenic responses. These experiments demonstrate a crosstalk of tumor cell TF cytoplasmic domain and PAR2 signaling and provide a possible mechanism for the close correlation between TF phosphorylation and cancer recurrence of TF and PAR2-positive clinical breast cancer.
Thrombosis Research | 2010
Wolfram Ruf; Naho Yokota; Florence Schaffner
Constitutive expression of tissue factor (TF) by cancer cells triggers local and systemic activation of the coagulation cascade and is a major cause of cancer-associated thrombosis. Primary breast cancer biopsies show a marked upregulation of TF and protease activated receptor (PAR) 2, as well as increased TF cytoplasmic domain phosphorylation that is correlated with cancer relapse. TF signaling involving PAR2 and integrins has multiple effects on angiogenesis and tumor progression. The non-coagulant, alternatively spliced form of TF retains an integrin-binding site and, upon deposition into the tumor stroma, stimulates angiogenesis by ligating endothelial integrins alpha(v)beta(3) and alpha(6)beta(1). On tumor cells, full-length TF is constitutively associated with laminin-binding beta(1) integrins that support TF-VIIa-PAR2 signaling leading to upregulation of pro-angiogenic and immune modulatory cytokines and growth factors. Deficiency of PAR2, but not of the thrombin receptor PAR1, delays spontaneous breast cancer development and the angiogenic switch in mice. In addition, human xenograft breast cancer growth and angiogenesis is suppressed by selective antibody inhibition of TF-VIIa-PAR2 signaling, but not by blocking TF initiated coagulation. Thus, interruption of TF signaling represents a potential anti-angiogenic strategy that does not carry an increased risk of bleeding associated with prolonged inhibition of the TF coagulation pathway.
Molecular Cancer Research | 2009
Shiro Koizume; Naho Yokota; Etsuko Miyagi; Fumiki Hirahara; Yoshiyasu Nakamura; Yuji Sakuma; Akira Yoshida; Yoichi Kameda; Eiju Tsuchiya; Wolfram Ruf; Yohei Miyagi
Tissue factor/coagulation factor VII (fVII) complex formation on the surface of cancer cells plays important roles in cancer biology, such as cell migration and invasion, angiogenesis, and antiapoptotic effects. We recently found that various cancer cells ectopically synthesize fVII, resulting in activation of cell motility and invasion. Here, we characterized mechanisms of hepatic and ectopic fVII (FVII) gene expression to identify molecular targets enabling selective inhibition of the ectopic expression. Unlike hepatic expression, hepatocyte nuclear factor-4 binding to the promoter is not required for ectopic FVII expression, although Sp1 binding is essential. Furthermore, we found novel nuclear targets of basal hepatocytic and ectopic FVII expression. Notably, histone acetyltransferases p300 and cyclic AMP–responsive element binding protein–binding protein (CBP) are exclusively recruited to the promoter region of the FVII gene specifically in breast cancer cells. We further show that curcumin, a dietary compound, can selectively inhibit ectopic fVII expression by targeting p300/CBP activity. These results suggest a strategy to inhibit ectopic fVII-induced tumor progression without impairment of the physiologic hemostatic process. (Mol Cancer Res 2009;7(12):1928–36)
PLOS ONE | 2013
Florence Schaffner; Naho Yokota; Tatiana C. Carneiro-Lobo; Maki Kitano; Michael Schaffer; G. Mark Anderson; Barbara M. Mueller; Charles T. Esmon; Wolfram Ruf
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.
Thrombosis Research | 2012
Florence Schaffner; Naho Yokota; Wolfram Ruf
Cancer progression from a dormant, non-vascularized benign tumor to metastatic disease is a multiple steps process that critically depends on contributions from the hemostatic system. Tissue factor (TF), protease activated receptors (PARs), factor VIIa, and the endothelial protein C receptor (EPCR) are expressed by tumor cells as well as the host compartment. These components of the hemostatic system regulate tumor growth, angiogenesis and metastasis. Here we review the evidence that TF-dependent signaling is the major driver of primary tumor growth, whereas TF-initiated coagulation and interactions of procoagulant tumor cells with the host compartments initiate multiple pathways that support and regulate the efficiency of metastatic tumor dissemination.
PLOS ONE | 2013
Tae Mogami; Naho Yokota; Mikiko Asai-Sato; Roppei Yamada; Shiro Koizume; Yuji Sakuma; Mitsuyo Yoshihara; Yoshiyasu Nakamura; Yasuo Takano; Fumiki Hirahara; Yohei Miyagi; Etsuko Miyagi
Ovarian clear cell adenocarcinoma (CCC) is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca++-binding annexin A4 (ANXA4) protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs) that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO) resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.
Journal of Thrombosis and Haemostasis | 2014
Naho Yokota; Alessandro Zarpellon; Sagarika Chakrabarty; Vladimir Y. Bogdanov; Andras Gruber; Francis J. Castellino; Nigel Mackman; Lesley G. Ellies; Hartmut Weiler; Zaverio M. Ruggeri; Wolfram Ruf
Tumor cell tissue factor (TF)‐initiated coagulation supports hematogenous metastasis by fibrin formation, platelet activation and monocyte/macrophage recruitment. Recent studies identified host anticoagulant mechanisms as a major impediment to successful hematogenous tumor cell metastasis.
American Journal of Obstetrics and Gynecology | 2008
Naho Yokota; Hiroshi Yoshida; Hideya Sakakibara; Yoshiaki Inayama; Fumiki Hirahara
We report a rare case in which a cystic lesion in the cervix, caused by endometriosis, resulted in a massive vaginal hemorrhage. Cervical endometriosis is relatively common and is usually considered a mild condition. However, we report a case in which a severe vaginal bleed originated from an endometrial cyst of the cervix and in which diagnosis was confused by the presence of atypical cells.
Biochemical and Biophysical Research Communications | 2008
Shiro Koizume; Naho Yokota; Etsuko Miyagi; Fumiki Hirahara; Eiju Tsuchiya; Yohei Miyagi
Here, we demonstrate by chromatin immunoprecipitation that the binding of hypoxia-inducible factors to gene regulatory regions is differentially influenced in cancer cells. Binding of HIF-2alpha varies depending on hypoxic conditions, although HIF-1alpha is constantly bound to these regions. We found by RNA interference experiments that HIF-2alpha plays a minor role in VEGF gene upregulation under hypoxia or CoCl(2) treatment, even when both HIFs are similarly bound to the promoter region. HIF-2alpha activated or suppressed the ENO1 gene under various conditions, irrespective of promoter binding. We additionally found that HIF dependence on EPO gene induction could be altered depending on the conditions, irrespective of the binding pattern of HIFs. These results demonstrate that, unlike HIF-1alpha, HIF-2alpha differentially binds and regulates transcription under hypoxia.