Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nahoko Ieda is active.

Publication


Featured researches published by Nahoko Ieda.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain

Junko Tomikawa; Yoshihisa Uenoyama; Makiko Ozawa; Tatsuya Fukanuma; Kenji Takase; Teppei Goto; Hitomi Abe; Nahoko Ieda; Shiori Minabe; Chikaya Deura; Naoko Inoue; Makoto Sanbo; Koichi Tomita; Masumi Hirabayashi; Satoshi Tanaka; Takuya Imamura; Hiroaki Okamura; Kei-ichiro Maeda; Hiroko Tsukamura

This study aims to determine the epigenetic mechanism regulating Kiss1 gene expression in the anteroventral periventricular nucleus (AVPV) to understand the mechanism underlying estrogen-positive feedback action on gonadotropin-releasing hormone/gonadotropin surge. We investigated estrogen regulation of the epigenetic status of the mouse AVPV Kiss1 gene locus in comparison with the arcuate nucleus (ARC), in which Kiss1 expression is down-regulated by estrogen. Histone of AVPV Kiss1 promoter region was highly acetylated, and estrogen receptor α was highly recruited at the region by estrogen. In contrast, the histone of ARC Kiss1 promoter region was deacetylated by estrogen. Inhibition of histone deacetylation up-regulated in vitro Kiss1 expression in a hypothalamic non–Kiss1-expressing cell line. Gene conformation analysis indicated that estrogen induced formation of a chromatin loop between Kiss1 promoter and the 3′ intergenic region, suggesting that the intergenic region serves to enhance estrogen-dependent Kiss1 expression in the AVPV. This notion was proved, because transgenic reporter mice with a complete Kiss1 locus sequence showed kisspeptin neuron-specific GFP expression in both the AVPV and ARC, but the deletion of the 3′ region resulted in greatly reduced GFP expression only in the AVPV. Taken together, these results demonstrate that estrogen induces recruitment of estrogen receptor α and histone acetylation in the Kiss1 promoter region of the AVPV and consequently enhances chromatin loop formation of Kiss1 promoter and Kiss1 gene enhancer, resulting in an increase in AVPV-specific Kiss1 gene expression. These results indicate that epigenetic regulation of the Kiss1 gene is involved in estrogen-positive feedback to generate the gonadotropin-releasing hormone/gonadotropin surge.


ACS Medicinal Chemistry Letters | 2011

Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

Shinya Oishi; Ryosuke Misu; Kenji Tomita; Shohei Setsuda; Ryo Masuda; Hiroaki Ohno; Yousuke Naniwa; Nahoko Ieda; Naoko Inoue; Satoshi Ohkura; Yoshihisa Uenoyama; Hiroko Tsukamura; Kei-ichiro Maeda; Akira Hirasawa; Gozoh Tsujimoto; Nobutaka Fujii

Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.


Journal of Reproduction and Development | 2013

dynorphin-kappa opioid receptor signaling partly mediates estrogen negative feedback effect on LH pulses in female rats.

Mst. Parvin Mostari; Nahoko Ieda; Chikaya Deura; Shiori Minabe; Shunji Yamada; Yoshihisa Uenoyama; Kei-ichiro Maeda; Hiroko Tsukamura

Abstract Accumulating evidence suggests that the arcuate nucleus (ARC) kisspeptin/neurokinin B (NKB)/dynorphin (KNDy) neurons play a role in estrogen negative feedback action on pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release. The present study aimed to determine if dynorphin (Dyn) is involved in estrogen negative feedback on pulsatile GnRH/LH release. The effect of the injection of nor-binaltorphimine (nor-BNI), a kappa-opioid receptor (KOR) antagonist, into the third cerebroventricle (3V) on LH pulses was determined in ovariectomized (OVX) adult female rats with/without replacement of negative feedback levels of estradiol (low E2). The mean LH concentrations and baseline levels of LH secretion in nor-BNI-injected, low E2-treated rats were significantly higher compared with vehicle-treated controls. On the other hand, the nor-BNI treatment failed to affect any LH pulse parameters in OVX rats without low E2 treatment. These results suggest that Dyn is involved in the estrogen negative feedback regulation of pulsatile GnRH/LH release. The low E2 treatment had no significant effect on the numbers of ARC Pdyn (Dyn gene)-,Kiss1- and Tac2 (NKB gene)-expressing cells. The treatment also did not affect mRNA levels of Pdyn and Oprk1 (KOR gene) in the ARC-median eminence region, but significantly increased the ARC kisspeptin immunoreactivity. These findings suggest that the negative feedback level of estrogen suppresses kisspeptin release from the ARC KNDy neurons through an unknown mechanism without affecting the Dyn and KOR expressions in the ARC. Taken together, the present result suggests that Dyn-KOR signaling is a part of estrogen negative feedback action on GnRH/LH pulses by reducing the kisspeptin release in female rats.


Journal of Neuroendocrinology | 2015

Lack of Pulse and Surge Modes and Glutamatergic Stimulation of Luteinising Hormone Release in Kiss1 Knockout Rats

Yoshihisa Uenoyama; Sho Nakamura; Y. Hayakawa; Kana Ikegami; Youki Watanabe; Chikaya Deura; Shiori Minabe; Junko Tomikawa; Teppei Goto; Nahoko Ieda; Naoko Inoue; M. Sanbo; C. Tamura; M. Hirabayashi; Kei-ichiro Maeda; Hiroko Tsukamura

Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin‐releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin‐GPR54 signalling in the control of animal reproduction, although detailed analyses of gonadotrophin secretion, especially pulsatile and surge‐mode of luteinising hormone (LH) secretion, were limited. Thus, in the present study, we have generated Kiss1 KO rats aiming to evaluate a key role of kisspeptin in governing reproduction via pulse and surge modes of GnRH/LH secretion. Kiss1 KO male and female rats showed a complete suppression of pulsatile LH secretion, which is responsible for folliculogenesis and spermatogenesis, and an absence of puberty and atrophic gonads. Kiss1 KO female rats showed no spontaneous LH/follicle‐stimulating hormone surge and an oestrogen‐induced LH surge, suggesting that the GnRH surge generation system, which is responsible for ovulation, does not function without kisspeptin. Furthermore, challenge of major stimulatory neurotransmitters, such as monosodium glutamate, NMDA and norepinephrine, failed to stimulate LH secretion in Kiss1 KO rats, albeit they stimulated LH release in wild‐type controls. Taken together, the results of the present study confirm that kisspeptin plays an indispensable role in generating two modes (pulse and surge) of GnRH/gonadotrophin secretion to regulate puberty onset and normal reproductive performance. In addition, the present study suggests that kisspeptin neurones play a critical role as a hub integrating major stimulatory neural inputs to GnRH neurones, using newly established Kiss1 KO rats, which serve as a useful model for detailed analysis of hormonal profiles.


Neuroendocrinology | 2016

Molecular and Epigenetic Mechanism Regulating Hypothalamic Kiss1 Gene Expression in Mammals.

Yoshihisa Uenoyama; Junko Tomikawa; Naoko Inoue; Teppei Goto; Shiori Minabe; Nahoko Ieda; Sho Nakamura; Youki Watanabe; Kana Ikegami; Fuko Matsuda; Satoshi Ohkura; Kei-ichiro Maeda; Hiroko Tsukamura

After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals. Recently, emerging evidence has indicated the molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression. Here we compile data regarding DNA and histone modifications in the Kiss1 promoter region and provide a hypothetic scheme of the molecular and epigenetic mechanism regulating Kiss1 gene expression in two populations of hypothalamic kisspeptin neurons, which govern puberty and subsequent reproductive performance via GnRH/gonadotropin secretion.


Journal of Reproduction and Development | 2016

Immunohistochemical characterization of the arcuate kisspeptin/neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers.

Ahmed Saad Ahmed Hassaneen; Yousuke Naniwa; Yuta Suetomi; Shuichi Matsuyama; Koji Kimura; Nahoko Ieda; Naoko Inoue; Yoshihisa Uenoyama; Hiroko Tsukamura; Kei-ichiro Maeda; Fuko Matsuda; Satoshi Ohkura

Elucidating the physiological mechanisms that control reproduction is an obvious strategy for improving the fertility of cattle and developing new agents to control reproductive functions. The present study aimed to identify kisspeptin neurons in the bovine hypothalamus, clarifying that a central mechanism is also present in the cattle brain, as kisspeptin is known to play an important role in the stimulation of gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in other mammals. To characterize kisspeptin neurons in the bovine hypothalamus, the co-localizations of kisspeptin and neurokinin B (NKB) or kisspeptin and dynorphin A (Dyn) were examined. Hypothalamic tissue was collected from Japanese Black or Japanese Black × Holstein crossbred cows during the follicular and luteal phases. Brain sections, including the arcuate nucleus (ARC) and the preoptic area (POA), were dual immunostained with kisspeptin and either NKB or Dyn. In the ARC, both NKB and Dyn were co-localized in kisspeptin neurons during both the follicular and luteal phases, demonstrating the presence of kisspeptin/NKB/Dyn-containing neurons, referred to as KNDy neurons, in cows. In the POA, no co-localization of kisspeptin with either NKB or Dyn was detected. Kisspeptin expression in the follicular phase was higher than that in the luteal phase, suggesting that kisspeptin expression in the POA is positively controlled by estrogen in cows. The kisspeptin neuronal populations in the ARC and POA likely play important roles in regulating the GnRH pulse and surge, respectively, in cows.


Journal of Reproduction and Development | 2014

KISS1 Gene Expression in the Developing Brain of Female Pigs in Pre- and Peripubertal Periods

Nahoko Ieda; Yoshihisa Uenoyama; Yoko Tajima; Tomoko Nakata; Masatoshi Kano; Yousuke Naniwa; Youki Watanabe; Shiori Minabe; Junko Tomikawa; Naoko Inoue; Fuko Matsuda; Satoshi Ohkura; Kei-ichiro Maeda; Hiroko Tsukamura

Puberty is associated with an increase in gonadotropin secretion as a result of an increase in gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is considered to play a key role in puberty onset in many mammalian species, including rodents, ruminants and primates. The present study aimed to determine if changes in hypothalamic expression of the KISS1 gene, encoding kisspeptin, are associated with the onset of puberty in pigs. The animals (n=4 in each group) were perfused with 4% paraformaldehyde at 0, 1, 2, 3 and 4 months old, as prepubertal stages, and at 5 months old, as the peripubertal stage, following each blood sampling. KISS1 gene expressions in coronal sections of brains were visualized by in situ hybridization. Plasma luteinizing hormone (LH) was measured by radioimmunoassay. KISS1 mRNA signals were observed in the arcuate nucleus (ARC) at all ages examined without any significant difference in the number of KISS1-expressing cells, indicating that the KISS1 gene is constantly expressed in the ARC throughout pubertal development in pigs. The plasma LH concentration was the highest in 0-month-old piglets and significantly decreased in the 1- and 2 month-old groups (P<0.05), suggesting a developing negative feedback mechanism affecting gonadotropin release during the prepubertal period. Considering the potent stimulating effect of kisspeptin on gonadotropin release in prepubertal pigs, kisspeptin secretion rather than kisspeptin synthesis may be responsible for the onset of puberty in pigs.


Bioorganic & Medicinal Chemistry | 2014

Design and synthesis of fluorescent probes for GPR54.

Masato Kaneda; Ryosuke Misu; Hiroaki Ohno; Akira Hirasawa; Nahoko Ieda; Yoshihisa Uenoyama; Hiroko Tsukamura; Kei-ichiro Maeda; Shinya Oishi; Nobutaka Fujii

Kisspeptins are neuropeptides that induce the secretion of gonadotropin-releasing hormone via the activation of the cognate receptor, G-protein coupled receptor 54 (GPR54). The kisspeptin-GPR54 axis is associated with the onset of puberty and the maintenance of the reproductive system. In this study, several fluorescent probes have been designed and synthesized for rat GPR54 through the modification of the N-terminus of rat kisspeptins to allow for the visualization of the expression and localization of kisspeptin receptor(s) in living cells and native tissues. The tetramethylrhodamine (TMR) and rhodamine green (RG)-labeled kisspeptins exhibited good binding and agonistic activities towards GPR54, and the results of the application studies demonstrated that these fluorescent probes could be used effectively for the detection of GPR54 receptors in flow cytometry and confocal microscopy experiments.


Journal of Neuroendocrinology | 2017

Evidence of involvement of neurone‐glia/neurone‐neurone communications via gap junctions in synchronised activity of KNDy neurones

Kana Ikegami; Shiori Minabe; Nahoko Ieda; Teppei Goto; A. Sugimoto; Sho Nakamura; Naoko Inoue; Shinya Oishi; A. D. Maturana; M. Sanbo; M. Hirabayashi; Kei-ichiro Maeda; Hiroko Tsukamura; Yoshihisa Uenoyama

Pulsatile secretion of gonadotrophin‐releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so‐called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB‐NK3R signalling. We determined the role of NKB‐NK3R signalling in Ca2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca2+ oscillations in cultured Kiss1‐GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1‐green fluorescent protein (GFP) mice. The senktide‐induced Ca2+ oscillations were synchronised in the Kiss1‐GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca2+ oscillations, revealed close contacts between Kiss1‐GFP cells, as well as between Kiss1‐GFP cells and glial cells. Dye coupling experiments suggest cell‐to‐cell communication through gap junctions between Kiss1‐GFP cells and neighbouring glial cells. Connexin‐26 and ‐37 mRNA were found in isolated ARC Kiss1 cells taken from adult female Kiss1‐GFP transgenic mice. Furthermore, 18β‐glycyrrhetinic acids and mefloquine, which are gap junction inhibitors, attenuated senktide‐induced Ca2+ oscillations in Kiss1‐GFP cells. Taken together, these results suggest that NKB‐NK3R signalling enhances synchronised activities among neighbouring KNDy neurones, and that both neurone‐neurone and neurone‐glia communications via gap junctions possibly contribute to synchronised activities among KNDy neurones.


Journal of Neuroendocrinology | 2017

Enhancement of the luteinising hormone surge by male olfactory signals is associated with anteroventral periventricular Kiss1 cell activation in female rats

Youki Watanabe; Kana Ikegami; Ren Ishigaki; Nahoko Ieda; Yoshihisa Uenoyama; Kei-ichiro Maeda; Hiroko Tsukamura; Naoko Inoue

Olfactory stimuli play an important role in regulating reproductive functions in mammals. The present study investigated the effect of olfactory signals derived from male rats on kisspeptin neuronal activity and luteinising hormone (LH) secretion in female rats. Wistar‐Imamichi strain female rats were ovariectomised (OVX) and implanted with preovulatory levels of 17β‐oestradiol (E2). OVX+E2 rats were killed 1 hour after exposure to either: clean bedding, female‐soiled bedding or male‐soiled bedding. Dual staining for Kiss1 mRNA in situ hybridisation and c‐Fos immunohistochemistry revealed that the numbers of Kiss1‐expressing cells and c‐Fos‐immunopositive Kiss1‐expressing cells in the anteroventral periventricular nucleus (AVPV) were significantly higher in OVX+E2 rats exposed to male‐soiled bedding than those of the other groups. No significant difference was found with respect to the number of c‐Fos‐immunopositive Kiss1‐expressing cells in the arcuate nucleus and c‐Fos‐immunopositive Gnrh1‐expressing cells between the groups. The number of c‐Fos‐immunopositive cells was also significantly higher in the limbic system consisting of several nuclei, such as the bed nucleus of the stria terminalis, the cortical amygdala and the medial amygdala, in OVX+E2 rats exposed to male‐soiled bedding than the other groups. OVX+E2 rats exposed to male‐soiled bedding showed apparent LH surges, and the peak of the LH surge and area under the curve of LH concentrations in the OVX+E2 group were significantly higher than those of the other two groups. These results suggest that olfactory signals derived from male rats activate AVPV kisspeptin neurones, likely via the limbic system, resulting in enhancement of the peak of the LH surge in female rats. Taken together, the results of the present study suggests that AVPV kisspeptin neurones are a target of olfactory signals to modulate LH release in female rats.

Collaboration


Dive into the Nahoko Ieda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Ohkura

Primate Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge