Nahum Puebla-Osorio
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nahum Puebla-Osorio.
Journal of Experimental Medicine | 2014
Jae Hoon Chang; Hongbo Hu; Jin Jin; Nahum Puebla-Osorio; Yichuan Xiao; Brian E. Gilbert; Robert Brink; Stephen E. Ullrich; Shao Cong Sun
The induction of follicular regulatory T cells and control of germinal center reactions require the adaptor protein Traf3, in part because of Traf3-induced expression of ICOS.
Cell Cycle | 2010
Omid Tavana; Cara L. Benjamin; Nahum Puebla-Osorio; Mei Sang; Stephen E. Ullrich; Honnavara N. Ananthaswamy; Chengming Zhu
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.
Diabetes | 2010
Omid Tavana; Nahum Puebla-Osorio; Mei Sang; Chengming Zhu
OBJECTIVE Regulation of pancreatic β-cell mass is essential to preserve sufficient insulin levels for the maintenance of glucose homeostasis. Previously, we reported that DNA double-strand breaks (DSBs) resulting from nonhomologous end-joining (NHEJ) deficiency induce apoptosis and, when combined with p53 deficiency, progressed rapidly into lymphomagenesis in mice. Combination of NHEJ deficiency with a hypomorphic mutation, p53R172P, leads to the abrogation of apoptosis, upregulation of p21, and senescence in precursor lymphocytes. This was sufficient to prevent tumorigenesis. However, these mutant mice succumb to severe diabetes and die at an early age. The aim of this study was to determine the pathogenesis of diabetes in these mutant mice. RESEARCH DESIGN AND METHODS We analyzed the morphology of the pancreatic islets and the function, proliferation rate, and senescence of β-cells. We also profiled DNA damage and p53 and p21 expression in the pancreas. RESULTS NHEJ-p53R172P mutant mice succumb to diabetes at 3–5 months of age. These mice show a progressive decrease in pancreatic islet mass that is independent of apoptosis and innate immunity. We observed an accumulation of DNA damage, accompanied with increased levels of p53 and p21, a significant decrease in β-cell proliferation, and cellular senescence in the mutant pancreatic islets. CONCLUSIONS Combined DSBs with an absence of p53-dependent apoptosis activate p53-dependent senescence, which leads to a diminished β-cell self-replication, massive depletion of the pancreatic islets, and severe diabetes. This is a model that connects impaired DNA repair and accumulative DNA damage, a common phenotype in aging individuals, to the onset of diabetes.
Immunologic Research | 2008
Nahum Puebla-Osorio; Chengming Zhu
Lymphocyte maturation requires generation of a large diversity of antigen receptors, which involves somatic rearrangements at the antigen receptor genes in a process termed V(D)J recombination. Upon encountering specific antigens, B-lymphocytes undergo rearrangements in the constant region of the immunoglobulin genes to optimize immune responses in a process called class switch recombination. Activated B-cells also undergo somatic hypermutation in the variable regions of the immunoglobulin genes to enhance their antigenic affinity. These somatic events are initiated by the infliction of DNA lesions within the antigen receptor genes that are strictly confined to a specific developmental window and cell-cycle stage. DNA lesions are then repaired by one of the general DNA repair mechanisms, such as non-homologous end-joining. Mutations in key factors of these pathways lead to the interruption of these processes and immunodeficiency, making it possible to study the mechanisms of cellular response to DNA lesions and their repair. This review briefly summarizes some of the recently developed animal models with focus on current advances in the understanding of the mechanism of DNA end-joining activities, and its role in the maintenance of genomic stability and the prevention of tumorigenesis.
Journal of Investigative Dermatology | 2015
Elisabetta Damiani; Nahum Puebla-Osorio; Enrique Gorbea; Stephen E. Ullrich
Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.
BMC Cancer | 2011
Nahum Puebla-Osorio; Yasuko Miyahara; Sreevidya Coimbatore; Alberto Y. Limón-Flores; Nasser Kazimi; Stephen E. Ullrich; Chengming Zhu
BackgroundThe incidence of non-Hodgkins lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation.MethodsUVB-irradiated p53+/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling.ResultsUVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19+, CD5+, B220+, IgM+ and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression.ConclusionUV-irradiated p53+/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The induction of B cell lymphoma in UV-irradiated p53 heterozygous mice may provide a useful model for lymphoma development in humans.
Photochemistry and Photobiology | 2015
Mengxiong Sun; Chenghao Zhou; Hui Zeng; Nahum Puebla-Osorio; Elisabetta Damiani; Jian Chen; Hongsheng Wang; Guodong Li; Fei Yin; Liancheng Shan; Dongqing Zuo; Yuxin Liao; Longpo Zheng; Yingqi Hua; Zhengdong Cai
This study was carried out to investigate the anti‐tumor effect and mechanism of hiporfin‐mediated photodynamic therapy (hiporfin‐PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration‐dependent manner. Hiporfin‐PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin‐PDT increased the expression of cleaved‐caspase‐3, cleaved PARP‐1, Bax and RIP1 while it decreased the expression of Bcl‐2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin‐PDT could be rescued by Nec‐1 but not by Z‐VAD‐FMK. Production of reactive oxygen species was increased after hiporfin‐PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin‐PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved‐caspase‐3 and downregulation of Bcl‐2 after hiporfin‐PDT. These results indicate that hiporfin‐PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma.
Diabetes | 2013
Omid Tavana; Nahum Puebla-Osorio; Jiseong Kim; Mei Sang; Stella Jang; Chengming Zhu
The genesis of β-cells predominantly occurs through self-replication; therefore, understanding the regulation of cell proliferation is essential. We previously showed that the lack of nonhomologous end joining (NHEJ) DNA repair factor ligase IV leads to an accumulation of DNA damage that permanently halts β-cell proliferation and dramatically decreases insulin production, causing overt diabetes in a hypomorphic p53R172P background. In the present study, to further delineate the function of NHEJ, we analyzed mice deficient for another key NHEJ factor, Ku70, to discover the effect of cellular responses to DNA damage in pancreatic β-cells on cellular proliferation and glucose homeostasis. Analysis of Ku70−/− pancreatic β-cells revealed an accumulation of DNA damage and activation of p53-dependent cellular senescence similar to the results found in our earlier ligase IV deficiency study. To our surprise, Ku70−/− mice had significantly increased β-cell proliferation and islet expansion, heightened insulin levels, and decreased glycemia. This augmented β-cell proliferation was accompanied by an increased β-catenin level, which we propose to be responsible for this phenotype. This study highlights Ku70 as an important player not only in maintaining genomic stability through NHEJ-dependent functions, but also in regulating pancreatic β-cell proliferation, a novel NHEJ-independent function.
Archive | 2017
Nahum Puebla-Osorio; Seri Narti Edayu Sarchio; Stephen E. Ullrich; Scott N. Byrne
Mast cells are part of the immune system and characteristically contain histamine- and heparin-rich basophilic granules. While these cells are usually associated with allergy and anaphylaxis, they also promote wound healing and angiogenesis and confer protection against pathogens. The presence of these cells is sometimes indicative of a poor prognosis, especially in skin cancer, pancreatic cancer, and lymphoma. Toluidine blue staining of acid-fast granules is an established method for the identification and quantification of mast cells. Generating detailed information on the location of mast cells within tissues is problematic using this technique and often requires serial sections from adjacent tissue to be separately stained with hematoxylin and eosin (H&E). Staining serial sections is not always possible, particularly if the sample is very small or rare. In such cases, a method of simultaneously identifying and localizing mast cells in a tissue would be advantageous. Toluidine blue and H&E are not commonly combined because H&E includes repetitive washes in water, which may affect the efficacy of the aqueous-soluble toluidine blue. We have developed and tested a novel staining technique that integrates toluidine blue between hematoxylin and eosin in one simple procedure. This protocol works on both frozen and formalin-fixed, paraffin-embedded tissue and readily allows for the identification of purple-stained mast cells against a clean H&E background. This facilitates a more accurate localization and proper counting of mast cells in normal and affected tissue.
Frontiers in Immunology | 2018
Marcia Campillo-Navarro; Kahiry Leyva-Paredes; Luis Donis-Maturano; Gloria M. Rodríguez-López; Rodolfo Soria-Castro; Blanca Estela García-Pérez; Nahum Puebla-Osorio; Stephen E. Ullrich; Julieta Luna-Herrera; Leopoldo Flores-Romo; Héctor Sumano-López; Sonia Mayra Pérez-Tapia; Sergio Estrada-Parra; Iris Estrada-García; Rommel Chacón-Salinas
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.