Nai-Jiang Liu
SUNY Downstate Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nai-Jiang Liu.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Sumita Chakrabarti; Nai-Jiang Liu; Alan R. Gintzler
Sexually dimorphic nociception and opioid antinociception is very pervasive but poorly understood. We had demonstrated that spinal morphine antinociception in females, but not males, requires the concomitant activation of spinal μ- and κ-opioid receptors (MOR and KOR, respectively). This finding suggests an interrelationship between MOR and KOR in females that is not manifest in males. Here, we show that expression of a MOR/KOR heterodimer is vastly more prevalent in the spinal cord of proestrous vs. diestrous females and vs. males. Cross-linking experiments in combination with in vivo pharmacological analyses indicate that heterodimeric MOR/KOR utilizes spinal dynorphin 1–17 as a substrate and is likely to be the molecular transducer for the female-specific KOR component of spinal morphine antinociception. The activation of KOR within the heterodimeric MOR/KOR provides a mechanism for recruiting spinal KOR-mediated antinociception without activating the concomitant pronociceptive functions that monomeric KOR also subserves. Spinal cord MOR/KOR heterodimers represent a unique pharmacological target for female-specific pain control.
Journal of Pharmacology and Experimental Therapeutics | 2007
Nai-Jiang Liu; Hans von Gizycki; Alan R. Gintzler
Current evidence for sex-based nociception and antinociception, largely confined to behavioral measures of pain sensitivity, chronic pain syndromes, and analgesic efficacy, provides little mechanistic insights into biological substrates causally associated with sexual dimorphic pain experience. Spinal cord has been shown to be a central nervous system region in which regulation of opioid antinociceptive substrates manifest sexual dimorphism. This site was therefore chosen to explore whether or not differential mechanisms underlie comparable spinal opioid antinociception in male and female rodents. Intrathecal (i.t.) application of morphine to male and female rats produces a thermal antinociception equivalent in magnitude and temporal profile. Nevertheless, it results from the sex-based differential recruitment of spinal analgesic components. As expected, the spinal μ-opioid receptor is critical for i.t. morphine antinociception in both sexes. However, in females, but not males, activation by i.t. morphine of spinal κ-opioid receptors is a prerequisite for spinal morphine antinociception. Furthermore, in females, but not males, i.t. application of antidynorphin antibodies substantially attenuates the antinociception produced by i.t. morphine. This indicates that the antinociception that results from the i.t. application of morphine in females requires the functional recruitment of spinal dynorphin. Female-specific recruitment by i.t. morphine of a spinal dynorphin/κ-opioid receptor pathway results from organizational consequences of ovarian sex steroids and not the absence of testicular hormones. These observations suggest that sexual dimorphic pain and analgesic mechanisms might be far more pervasive than commonly thought and underscore the imperative for including female as well as male subjects in all studies of pain and antinociception.
Frontiers in Neuroendocrinology | 2012
Alan R. Gintzler; Nai-Jiang Liu
Estrogens have a multitude of effects on opioid systems and are thought to play a key role in sexually dimorphic nociception and opioid antinociception. Heretofore, classical genomic actions of estrogens are largely thought to be responsible for the effects of these steroids on nociception and opioid antinociception. The recent discovery that estrogens can also activate estrogen receptors that are located in the plasma membrane, the effects of which are manifest in seconds to minutes instead of hours to days has revolutionized our thinking concerning the ways in which estrogens are likely to modulate pain responsiveness and the dynamic nature of that modulation. This review summarizes parameters of opioid functionality and nociception that are subject to modulation by estrogens, underscoring the added dimensions of such modulation that accrues from rapid membrane estrogen receptor signaling. Implications of this mode of signaling regarding putative sources of estrogens and its degradation are also discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Sumita Chakrabarti; Nai-Jiang Liu; Alan R. Gintzler
Phosphoinositide turnover and calcium mobilization are fundamental determinants of acute and chronic opioid effects. Phosphoinositide-specific phospholipase C (PLC) are key signaling enzymes that play a pivotal role in mediating opioid modulation of inositol trisphosphate production and cytosolic calcium distribution, substrates for many acute and chronic opioid effects. Notably, phosphorylation of the β isoforms of PLC, by kinases that are up-regulated after chronic morphine, is a potent modality for their regulation. Direct assessment of PLCβ1 and PLCβ3 phosphorylation in the guinea pig longitudinal muscle myenteric plexus tissue revealed substantial alterations after the induction of opioid tolerance. Notably, the direction of this modulation is isoform-specific. Phosphorylation of PLCβ1 is significantly reduced, whereas that of PLCβ3 is substantially augmented, changes not accompanied by altered content of PLCβ1 or PLCβ3 protein. In contrast to chronic morphine, acute morphine treatment of opioid naïve longitudinal muscle myenteric plexus tissue attenuates PLCβ3 phosphorylation, an effect also manifested by endogenous opioids that is reflected by the ability of acute naloxone to substantially augment PLCβ3 phosphorylation. This indicates that PLCβ phosphorylation is dynamically regulated. PLCβ1 and PLCβ3 activities are negatively modulated by phosphorylation. Thus, their concomitant reciprocal phosphorylation would alter the relative contribution of these isoforms to PLC/Ca2+ signaling, a significant shift in light of their differential regulatory characteristics. Reciprocal modulation of the phosphorylation (activity) of two isoforms within the same subclass of signaling enzyme, proteins that have a high degree of structural similarity and subserve the same biological function, represents an adaptation modality to chronic morphine that has heretofore not been recognized.
Brain Research | 2006
Nai-Jiang Liu; Hans vonGizycki; Alan R. Gintzler
Phospholipase C (PLC) activity has been implicated in multiple opioid-induced sequelae. The relevance of PLC-linked pathways to opioid actions is isoform-specific. Chronic morphine augments PLCbeta1 signaling while diminishing that of PLCbeta3. This suggests that PLCbeta1 makes an important contribution to opioid tolerance formation (PNAS 100: 13686-1369, 2003). In the present study, PLCbeta1 knockout animals (-/-) were used to assess the relevance of PLCbeta1 to pain thresholds, morphine antinociception and analgesic tolerance formation. Response latencies to thermal nociceptive stimuli were markedly diminished in -/- animals relative to their wild-type (+/+) and heterozygous (+/-) counterparts; thermal nociceptive thresholds obtained in +/+ and +/- mice did not differ. This suggests that the contribution of PLCbeta1 to thermal pain thresholds requires a critical concentration of PLCbeta1 protein. PLCbeta1 genotype also influenced acute and chronic responsiveness to morphine. Analgesic dose responsiveness and the magnitude of analgesic tolerance formation to morphine were significantly attenuated in -/- vs. +/+ animals. Notably, in contrast to thermal nociceptive thresholds, acute and chronic morphine responsiveness differed significantly only between +/+ and -/- genotypes and not between -/- vs. +/- groups. These data suggest that whereas the contribution of PLCbeta1 to thermal nociceptive response thresholds requires a critical concentration of PLCbeta1 protein, its participation in morphine analgesic and tolerance-producing mechanisms is graded. Importantly, GTPgammaS binding studies revealed that there is no detectable diminution in functional opioid receptors in spinal tissue from -/- animals. This underscores the importance of PLCbeta1 to morphine sequelae that are initiated downstream from the opioid receptor.
Journal of Pharmacology and Experimental Therapeutics | 2012
Sumita Chakrabarti; Nai-Jiang Liu; James E. Zadina; Tarak Sharma; Alan R. Gintzler
We studied adaptations to acute precipitated opioid withdrawal of spinal μ-opioid receptor (MOR)-coupled regulation of the release of endomorphin 2 (EM2). The release of this highly MOR-selective endogenous opioid from opioid-naive spinal tissue of male rats is subjected to MOR-coupled positive as well as negative modulation via cholera toxin-sensitive Gs and pertussis toxin-sensitive Gi/Go, respectively. The net effect of this concomitant bidirectional modulation is inhibitory. MOR-coupled pleiotropic regulation of EM2 release is retained in opioid-withdrawn spinal tissue of male rats, but the balance of MOR-coupled inhibitory and facilitatory regulation shifted such that facilitatory regulation predominates. Augmented coupling of MOR to Gs is causally associated with this change. Strikingly, pleiotropic characteristics of MOR-coupled regulation of spinal EM2 release and adaptations thereof to opioid withdrawal are male-specific. In females, MOR-coupled regulation of EM2 release from opioid-naive and -withdrawn spinal tissue does not have a significant Gs-coupled facilitatory component, and MOR-coupled inhibition of EM2 release persists unabated in withdrawn preparations. The male-specific adaptations to chronic morphine that shift the relative predominance of opposing dual G protein-coupled MOR pathways provides a mechanism for mitigating inhibitory MOR signaling without losing MOR-coupled feedback regulation. These adaptations enable using endogenous EM2 as a substitute for morphine that had been precipitously removed. The sexually dimorphic functionality and regulation of spinal EM2/MOR-coupled signaling suggest the clinical utility of using sex-specific treatments for addiction that harness the activity of endogenous opioids.
The Journal of Pain | 2013
Nai-Jiang Liu; Alan R. Gintzler
UNLABELLEDnEndomorphin 2 (EM2) is the predominant endogenous mu-opioid receptor (MOR) ligand in the spinal cord. Given its endogenous presence, antinociceptive responsiveness to the intrathecal application of EM2 most likely reflects its ability to modulate nociception when released in situ. In order to explore the physiological pliability of sex-dependent differences in spinal MOR-mediated antinociception, we investigated the antinociception produced by intrathecal EM2 in male, proestrus female, and diestrus female rats. Antinociception was reflected by changes in tail flick latency to radiant heat. In females, the spinal EM2 antinociceptive system oscillated between analgesically active and inactive states. During diestrus, when circulating estrogens are low, spinal EM2 antinociceptive responsiveness was minimal. In contrast, during proestrus, when circulating estrogens are high, spinal EM2 antinociception was robust and comparable in magnitude to that manifest by males. Furthermore, in proestrus females, spinal EM2 antinociception required spinal dynorphin and kappa-opioid receptor activation, concomitant with MOR activation. This is required for neither spinal EM2 antinociception in males nor the antinociception elicited in proestrus females by spinal sufentanil or [d-Ala(2),N-methyl-Phe(4),Gly-ol(5)]-enkephalin, which are prototypic MOR-selective nonpeptide and peptide agonists, respectively. These results reveal that spinal EM2 antinociception and the signaling mechanisms used to produce it fundamentally differ in males and females.nnnPERSPECTIVEnThe inability to mount spinal EM2 antinociception during defined stages of the estrus (and presumably menstrual) cycle and impaired transition from spinal EM2 analgesically nonresponsive to responsive physiological states could be causally associated with the well-documented greater severity and frequency of chronic intractable pain syndromes in women vs men.
Journal of Neurochemistry | 2014
Vittorio Verzillo; Priyanka A. Madia; Nai-Jiang Liu; Sumita Chakrabarti; Alan R. Gintzler
The gene encoding the mu‐opioid receptor (MOR) generates a remarkable diversity of subtypes, the functional significance of which remains largely unknown. The structure of MOR could be a critical determinant of MOR functionality and its adaptations to chronic morphine exposure. As MOR antinociception has sexually dimorphic dimensions, we determined the influence of sex, stage of estrus cycle, and chronic systemic morphine on levels of MOR splice variant mRNA in rat spinal cord. Chronic systemic morphine influenced the spinal expression of mRNA encoding rMOR‐1B2 and rMOR‐1C1 in a profoundly sex‐dependent fashion. In males, chronic morphine resulted in a twofold increase in expression levels of rMOR‐1B2 and rMOR‐1C1 mRNA. This effect of chronic morphine was completely absent in females. Increased density of MOR protein in spinal cord of males accompanied the chronic morphine‐induced increase in MOR variant mRNA, suggesting that it reflected an increase in corresponding receptor protein. These results suggest that tolerance/dependence results, at least in part, from different adaptational strategies in males and females. The signaling consequences of the unique composition of the C‐terminus tip of rMOR‐1C1 and rMOR‐1B2 could point the way to defining the molecular components of sex‐dependent tolerance and withdrawal mechanisms.
Brain Research | 2004
Nai-Jiang Liu; Sumita Chakrabarti; Alan R. Gintzler
This laboratory recently demonstrated a multiplicative interaction between the pelvic visceral afferent transmitter vasoactive intestinal polypeptide (VIP) and the delta-opioid receptor (DOR)-selective agonist [D-Pen2,5] enkephalin (DPDPE) to regulate cAMP levels in spinal cord [Brain Res. 959 (2003) 103]. Although DOR activation is required for the manifestation of the VIP-DPDPE facilitative interaction, its relevance to opioid antinociception remains unclear. The current study investigates whether or not the VIP-DPDPE facilitation of cAMP formation is subject to tolerance formation, a hallmark characteristic of opioid antinociception. Chronic morphine exposure abolishes the VIP-DPDPE facilitative interaction, consistent with its relevance to DOR antinociception. However, acute in vitro inhibition of protein kinase C (PKC) reinstates the VIP-DPDPE multiplicative interaction characteristic of opioid naïve spinal tissue. This suggests that its chronic morphine-induced loss requires a PKC phosphorylation. PKC phosphorylation negatively modulates phospholipase C (PLC)beta, enzymes intimately associated with phosphoinositide turnover and calcium trafficking. These are essential determinants of acute and chronic opioid effects. Accordingly, the effect of chronic morphine on their state of phosphorylation was also investigated. Central nervous system opioid tolerance is associated with the reciprocal phosphorylation (regulation) of two PLCbeta isoforms, PLCbeta1 and PLCbeta3. However, although chelerythrine reinstates the chronic morphine-induced loss of the multiplicative VIP-DPDPE interaction, it does not alter the associated changes in PLCbeta phosphorylation, possibly indicating different time courses of restitution of function and/or involvement of different kinases for different components of tolerance. These results could provide a mechanistic rubric for understanding positive modulation of opioid antinociception by afferent transmission.
Neuroendocrinology | 2015
Arjun Kumar; Emiliya M. Storman; Nai-Jiang Liu; Alan R. Gintzler
Background/Aims: Male and female rats differ in their ability to utilize spinal endomorphin 2 (EM2; the predominant mu-opioid receptor ligand in spinal cord) and in the mechanisms that underlie spinal EM2 analgesic responsiveness. We investigated the relevance of spinal estrogen receptors (ERs) to the in vivo regulation of spinal EM2 release. Methods: ER antagonists were administered directly to the lumbosacral spinal cord of male and female rats, intrathecal perfusate was collected, and resulting changes in EM2 release were quantified using a plate-based radioimmunoassay. Results: Intrathecal application of an antagonist of either estrogen receptor-α (ERα) or the ER GPR30 failed to alter spinal EM2 release. Strikingly, however, the concomitant blockade of ERα and GPR30 enhanced spinal EM2 release. This effect was sexually dimorphic, being absent in males. Furthermore, the magnitude of the enhancement of spinal EM2 release in females was dependent upon estrous cycle stage, suggesting a relationship with circulating levels of 17β-estradiol. The rapid onset of enhanced EM2 release following intrathecal application of ERα/GPR30 antagonists (within 30-40 min) suggests mediation via ERs in the plasma membrane, not the nucleus. Notably, both ovarian and spinally synthesized estrogens are essential for membrane ER regulation of spinal EM2 release. Conclusion: These findings underscore the importance of estrogens for the regulation of spinal EM2 activity and, by extension, endogenous spinal EM2 antinociception in females. Components of the spinal estrogenic mechanism(s) that suppress EM2 release could represent novel drug targets for improving utilization of endogenous spinal EM2, and thereby pain management in women.