Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naia Morueta-Holme is active.

Publication


Featured researches published by Naia Morueta-Holme.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional trait space and the latitudinal diversity gradient

Christine Lamanna; Benjamin Blonder; Cyrille Violle; Nathan J. B. Kraft; Brody Sandel; Irena Šímová; John C. Donoghue; Jens-Christian Svenning; Brian J. McGill; Brad Boyle; Vanessa Buzzard; Steven Dolins; Peter M. Jørgensen; Aaron Marcuse-Kubitza; Naia Morueta-Holme; Robert K. Peet; William H. Piel; James Regetz; Mark Schildhauer; Nick Spencer; Barbara M. Thiers; Susan K. Wiser; Brian J. Enquist

Significance We present a conceptual framework for testing theories for the latitudinal gradient of species richness in terms of variation in functional diversity at the alpha, beta, and gamma scales. We compared ecological community theory with large-scale observational data of tree species richness and functional diversity. We found that the patterns of functional trait diversity are not consistent with any one theory of species diversity. These conflicting results indicate that none of the broad classes of biodiversity theory considered here is alone able to explain the latitudinal gradient of species diversity in terms of functional trait space. The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt

Naia Morueta-Holme; Kristine Engemann; Pablo Sandoval-Acuña; Jeremy D. Jonas; R. Max Segnitz; Jens-Christian Svenning

Significance Tropical regions harbor the majority of the world’s biodiversity, but there is debate about whether montane species here are able to track global warming at the same rate as in temperate regions. By following in Humboldts footsteps and revisiting his pioneering documentation of vegetation elevation ranges, we show that the limit of plant growth has already been strongly pushed upslope. Although the rate of plant range shifts matches that found in other studies, the total magnitude of change in vegetation and glacier coverage on Chimborazo is larger than expected from warming temperatures alone. Global climate change is driving species poleward and upward in high-latitude regions, but the extent to which the biodiverse tropics are similarly affected is poorly known due to a scarcity of historical records. In 1802, Alexander von Humboldt ascended the Chimborazo volcano in Ecuador. He recorded the distribution of plant species and vegetation zones along its slopes and in surrounding parts of the Andes. We revisited Chimborazo in 2012, precisely 210 y after Humboldt’s expedition. We documented upward shifts in the distribution of vegetation zones as well as increases in maximum elevation limits of individual plant taxa of >500 m on average. These range shifts are consistent with increased temperatures and glacier retreat on Chimborazo since Humboldt’s study. Our findings provide evidence that global warming is strongly reshaping tropical plant distributions, consistent with Humboldt’s proposal that climate is the primary control on the altitudinal distribution of vegetation.


Ecology Letters | 2013

Habitat area and climate stability determine geographical variation in plant species range sizes

Naia Morueta-Holme; Brian J. Enquist; Brian J. McGill; Brad Boyle; Peter M. Jørgensen; Jeffrey E. Ott; Robert K. Peet; Irena Šímová; Lindsey L. Sloat; Barbara M. Thiers; Cyrille Violle; Susan K. Wiser; Steven Dolins; John C. Donoghue; Nathan J. B. Kraft; Jim Regetz; Mark Schildhauer; Nick Spencer; Jens-Christian Svenning

Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ∼ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.


Ecography | 2015

Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space

Irena Šímová; Cyrille Violle; Nathan J. B. Kraft; David Storch; Jens-Christian Svenning; Brad Boyle; John C. Donoghue; Peter M. Jørgensen; Brian J. McGill; Naia Morueta-Holme; William H. Piel; Robert K. Peet; Jim Regetz; Mark Schildhauer; Nick Spencer; Barbara M. Thiers; Susan K. Wiser; Brian J. Enquist

One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small-scale variation in functional traits along environmental gradient, the effect of large-scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.


Ecology and Evolution | 2015

Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot

Kristine Engemann; Brian J. Enquist; Brody Sandel; Brad Boyle; Peter M. Jørgensen; Naia Morueta-Holme; Robert K. Peet; Cyrille Violle; Jens-Christian Svenning

Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections.


Ecology | 2015

Linking environmental filtering and disequilibrium to biogeography with a community climate framework

Benjamin Blonder; David Nogués-Bravo; Michael K. Borregaard; John C. Donoghue; Peter M. Jørgensen; Nathan J. B. Kraft; Jean-Philippe Lessard; Naia Morueta-Holme; Brody Sandel; Jens-Christian Svenning; Cyrille Violle; Carsten Rahbek; Brian J. Enquist

We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.


BMC Biology | 2017

Spatial phylogenetics of the native California flora

Andrew H. Thornhill; Bruce G. Baldwin; William A. Freyman; Sonia Nosratinia; Matthew M. Kling; Naia Morueta-Holme; Thomas P. Madsen; David D. Ackerly; Brent D. Mishler

BackgroundCalifornia is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.39 million herbarium specimens, a phylogeny of 1083 operational taxonomic units (OTUs) and 9 genes, and a spatial randomization test to identify regions of significant phylogenetic diversity, relative phylogenetic diversity, and phylogenetic endemism (PE), as well as to conduct a categorical analysis of neo- and paleo-endemism (CANAPE).ResultsWe found (1) extensive phylogenetic clustering in the South Coast Ranges, southern Great Valley, and deserts of California; (2) significant concentrations of short branches in the Mojave and Great Basin Deserts and the South Coast Ranges and long branches in the northern Great Valley, Sierra Nevada foothills, and the northwestern and southwestern parts of the state; (3) significant concentrations of paleo-endemism in Northwestern California, the northern Great Valley, and western Sonoran Desert, and neo-endemism in the White-Inyo Range, northern Mojave Desert, and southern Channel Islands. Multiple analyses were run to observe the effects on significance patterns of using different phylogenetic tree topologies (uncalibrated trees versus time-calibrated ultrametric trees) and using different representations of OTU ranges (herbarium specimen locations versus species distribution models).ConclusionsThese analyses showed that examining the geographic distributions of branch lengths in a statistical framework adds a new dimension to California floristics that, in comparison with climatic data, helps to illuminate causes of endemism. In particular, the concentration of significant PE in more arid regions of California extends previous ideas about aridity as an evolutionary stimulus. The patterns seen are largely robust to phylogenetic uncertainty and time calibration but are sensitive to the use of occurrence data versus modeled ranges, indicating that special attention toward improving geographic distributional data should be top priority in the future for advancing understanding of spatial patterns of biodiversity.


Methods in Ecology and Evolution | 2017

The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database

Brian S. Maitner; Brad Boyle; Nathan Casler; Rick Condit; John C. Donoghue; Sandra M. Durán; Daniel Guaderrama; Cody E. Hinchliff; Peter M. Jørgensen; Nathan J. B. Kraft; Brian J. McGill; Cory Merow; Naia Morueta-Holme; Robert K. Peet; Brody Sandel; Mark Schildhauer; Stephen A. Smith; Jens-Christian Svenning; Barbara M. Thiers; Cyrille Violle; Susan K. Wiser; Brian J. Enquist

There is an urgent need for large-scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling human-biodiversity interactions and global change dynamics such as food and energy security, ecosystem services, climate change, and species invasions. The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data, containing roughly 81 million occurrence records from c. 375,000 species, c. 915,000 trait observations across 28 traits from c. 93,000 species, and co-occurrence records from 110,000 ecological plots globally, as well as 100,000 range maps and 100 replicated phylogenies (each containing 81,274 species) for New World species. Here, we describe an r package that provides easy access to these data. The bien r package allows users to access the multiple types of data in the BIEN database. Functions in this package query the BIEN database by turning user inputs into optimised PostgreSQL functions. Function names follow a convention designed to make it easy to understand what each function does. We have also developed a protocol for providing customised citations and herbarium acknowledgements for data downloaded through the bien r package. The development of the BIEN database represents a significant achievement in biological data integration, cleaning and standardization. Likewise, the bien r package represents an important tool for open science that makes the BIEN database freely and easily accessible to everyone.


IOP Conference Series: Earth and Environmental Science | 2009

Potential 21st century changes to the mammal fauna of Denmark ? implications of climate change, land-use, and invasive species

Camilla Fløjgaard; Naia Morueta-Holme; Flemming Skov; Aksel Bo Madsen; Jens-Christian Svenning

The moderate temperature increase of 0.74 °C in the 20th century has caused latitudinal and altitudinal range shifts in many species including mammals. Therefore, given the more dramatic temperature increase predicted for the 21st century, we can therefore expect even stronger range shifts as well. However, European mammals are already faced with other anthropogenic pressures, notably habitat loss, pollution, overexploitation, and invasive species, and will have to face the combined challenge posed by climate change in a landscape highly influenced by human activities. As an example of the possible consequences of land use, invasive species, and climate change for the regional-scale mammal species composition, we here focus on the potential 21st century changes to the mammal fauna of Denmark. Supported by species distribution modelling, we present a discussion of the possible changes to the Danish mammal fauna: Which species are likely to become locally extinct? Which new species are most likely to immigrate? And, what is the potential threat from invasive species? We find that future climate change is likely to cause a general enrichment of the Danish mammal fauna by the potential immigration of seventeen new species. Only the northern birch mouse (Sicista betulina) is at risk of extinction from climate change predicted. The European native mammals are not anticipated to contribute to the invasive-species problem as they coexist with most Danish species in other parts of Europe. However, non-European invasive species are also likely to enter the Danish fauna and may negatively impact the native species.


IOP Conference Series: Earth and Environmental Science | 2009

Big moving day for biodiversity? A macroecological assessment of the scope for assisted colonization as a conservation strategy under global warming

Jens-Christian Svenning; Camilla Fløjgaard; Naia Morueta-Holme; Jonathan Lenoir; Signe Normand; Flemming Skov

Future climate change constitutes a major threat to Earths biodiversity. If anthropogenic greenhouse gas emissions continue unabated, 21st century climate change is likely to exceed the natural adaptive capacity of many natural ecosystems and a large proportion of species may risk extinction. A recurrent finding is that the degree of negative impact depends strongly on the dispersal potential of the species. However, there is a growing realization that many, if not most species would be unlikely to disperse as fast and far as required. As a consequence, it has been proposed that species at risk should be actively translocated into unoccupied, but environmentally suitable areas that are likely to stay suitable over the next 100 or more years (assisted colonization or assisted migration). This solution is controversial, though, reflecting negative experiences with introduced exotics and probably also the traditional emphasis in conservation management on preserving a certain local, often historical situation with a static species composition, and a tendency among ecologists to think of biological communities as generally saturated with species. Using the European flora as a case study, we here estimate the main environmental controls of plant species richness, assess how the maximum observed species richness depends on these environmental controls, and based here on estimate how many species could at least be added to an area before further species additions would perhaps inevitably lead to corresponding losses locally. Our results suggest that there is substantial room for additional plant species across most areas of Europe, indicating that there is considerable scope for implementing assisted colonization as a proactive conservation strategy under global warming without necessarily implicating negative effects on the native flora in the areas targeted for establishment of translocated populations. Notably, our results suggest that 50% of the cells in Northern Europe, the likely target area for many translocations, could harbor at least 1/3 as many additional species as they have native species. However, we also emphasize that other, more traditional conservation strategies should also be strengthened, notably providing more space for nature and reducing nitrogen deposition to increase population resilience and facilitate unassisted colonization. Furthermore, any implementation of assisted colonization should be done cautiously, with a careful analysis on a species-by-species case.

Collaboration


Dive into the Naia Morueta-Holme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrille Violle

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Robert K. Peet

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge