Naira Baregamian
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naira Baregamian.
Oxidative Medicine and Cellular Longevity | 2009
Naira Baregamian; Jun Song; C. Eric Bailey; John Papaconstantinou; B. Mark Evers; Dai H. Chung
Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC). Tumor necrosis factor (TNF)α is thought to generate reactive oxygen species (ROS) and activate the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC. Results: We found (a) abundant tissue TNFα and ASK1 expression throughout all layers of the intestine in neonates with NEC, suggesting that TNFα/ASK1 may be a potential source (indicators) of intestinal injury in neonates with NEC; (b) TNFα-induced rapid and transient activation of JNK/p38 apoptotic signaling in all cell lines suggests that this may be an important molecular characteristic of NEC; (c) TNFα-induced rapid and transient ROs production in RIe-1 cells indicates that mitochondria are the predominant source of ROS, demonstrated by significantly attenuated response in mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells; (d) further studies with mitochondria-targeted antioxidant PBN supported our hypothesis that effective mitochondrial ROS trapping is protective against TNFα/ROs-induced intestinal epithelial cell injury; (e) TNFα induces significant mitochondrial dysfunction in intestinal epithelial cells, resulting in increased production of mtROS, drop in mitochondrial membrane potential (MMP) and decreased oxygen consumption; (f) although the significance of mitochondrial autophagy in NEC has not been unequivocally shown, our studies provide a strong preliminary indication that TNFα/ROs-induced mitochondrial autophagy may play a role in NeC, and this process is a late phenomenon. Methods: Paraffin-embedded intestinal sections from neonates with NEC and non-inflammatory condition of the gastrointestinal tract undergoing bowel resections were analyzed for TNFα and ASK1 expression. Rat (RIE-1) and mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells were used to determine the effects of TNFα on mitochondrial function. Conclusions: Our findings suggest that TNFα induces significant mitochondrial dysfunction and activation of mitochondrial apoptotic responses, leading to intestinal epithelial cell apoptosis during NeC. Therapies directed against mitochondria/ROS may provide important therapeutic options, as well as ameliorate intestinal epithelial cell apoptosis during NeC.
Biochemical and Biophysical Research Communications | 2009
Naira Baregamian; Joshua M. Mourot; Amie R. Ballard; B. Mark Evers; Dai H. Chung
Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-gamma in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-gamma agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min with variable periods of reperfusion. I/R injury resulted in early induction of PPAR-gamma expression and activation of NF-kappaB in small intestine. Pretreatment with PPAR-gamma agonist, 15d-PGJ(2), attenuated intestinal NF-kappaB response and I/R-induced gut injury. Activation of PPAR-gamma demonstrated a protective effect on small bowel during I/R-induced gut injury.
Pediatric Surgery International | 2011
Naira Baregamian; Jun Song; John Papaconstantinou; Hal K. Hawkins; B. Mark Evers; Dai H. Chung
PurposeReactive oxygen species (ROS) are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC). Mitochondria as a major source of intracellular ROS and apoptotic signaling during oxidative stress in NEC have not been investigated. We sought to determine: (1) the effects of oxidative stress on intestinal mitochondrial apoptotic signaling, and (2) the role of growth factors in this process.MethodsWe used Swiss-Webster mice pups, and rat intestinal epithelial (RIE)-1, mitochondrial DNA-depleted RIE-1 cell line (RIE-1-ρ°) and human fetal intestinal epithelial cells (FHs74 Int) for our studies.ResultsH2O2 induced apoptosis and ROS production. ROS-mediated activation of apoptotic signaling was significantly attenuated with mitochondrial silencing in RIE-1-ρ° cells. Growth factors, especially IGF-1, attenuated this response to H2O2 in intestinal epithelial cells.ConclusionsOur findings suggest that mitochondria are a major source of intestinal apoptotic signaling during oxidative stress, and modulating mitochondrial apoptotic responses may help ameliorate the effects of NEC.
European Journal of Pediatric Surgery | 2012
Naira Baregamian; Jun Song; Dai H. Chung
INTRODUCTION Oxidative stress activates multiple signaling transduction pathways, including the phosphatidylinositol 3-kinase (PI3-K), in an injured intestine as occurs in necrotizing enterocolitis (NEC). We have previously shown that hydrogen peroxide (H2O2)-induced PI3-K activation is significantly enhanced with exogenous insulin-like growth factor (IGF)-1 in intestinal epithelial cells. However, the effects of oxidative stress on IGF receptor type I (IGF-IR) activation and expression in the neonatal intestine during NEC are unknown. MATERIAL AND METHODS Intestinal sections from neonates undergoing bowel resections (control = 3, NEC = 20) were analyzed for IGF-IR expression. NEC was induced in newborn mouse pups using hypoxia and hyperosmolar feeds, and distal small bowel segments were analyzed for IGF-IR expression (control = 3, NEC = 7). H2O2 was used to induce oxidative stress in rat (RIE-1) and fetal human (FHs74 Int) intestinal epithelial cells. Phosphorylation of IGF-IR, Akt, a downstream effector of PI3-K, and IGF-IR levels were determined by Western blotting. Flow cytometry, immunofluorescence, immunohistochemistry, IGF-IR tyrosine phosphorylation array, cell death enzyme-linked immunosorbent assay, and Western blotting were used to determine the IGF-IR expression. RESULTS An increased IGF-IR expression was noted in intestinal sections from NEC as well as murine model of NEC. H2O2 treatment rapidly activated IGF-IR and increased the expression in RIE-1 and FHs74 Int cells. Inhibition of IGF-IR resulted in significant RIE-1 cell apoptosis during oxidative stress. IGF-IR tyrosine phosphorylation array showed the recruitment of several key SH2 domain-containing proteins and oncogenes to the IGF-IR tyrosine kinase domain in H2O2-treated RIE-1 cells. CONCLUSION IGF-IR-mediated activation of intracellular signaling may play a critical role during oxidative stress-induced apoptosis in NEC.
Journal of Surgical Research | 2006
Naira Baregamian; Jun Song; Marc G. Jeschke; B. Mark Evers; Dai H. Chung
Cancer Letters | 2007
Junghee Kang; Titilope A. Ishola; Naira Baregamian; Joshua M. Mourot; Piotr G. Rychahou; B. Mark Evers; Dai H. Chung
Surgery | 2007
Naira Baregamian; Piotr G. Rychahou; Hal K. Hawkins; B. Mark Evers; Dai H. Chung
Journal of Surgical Research | 2007
Naira Baregamian; Piotr G. Rychahou; B. Evers; Dai H. Chung
Journal of The American College of Surgeons | 2018
Kathleen C. Gallagher; Benjamin R. Campbell; Carmen C. Solorzano; Naira Baregamian
AACE clinical case reports | 2018
Kathleen C. Gallagher; Mirna B. Podoll; S. Sadia Zaidi; Naira Baregamian