Najia Karim Ghanchi
Aga Khan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Najia Karim Ghanchi.
Malaria Journal | 2010
Najia Karim Ghanchi; Andreas Mårtensson; Johan Ursing; Sana Jafri; Sándor Bereczky; Rabia Hussain; Mohammad Asim Beg
BackgroundThe genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Pakistan. This study aimed to establish molecular characterization of P. falciparum field isolates in Pakistan measured with two highly polymorphic genetic markers, i.e. the merozoite surface protein 1 (msp-1)and 2 (msp-2).MethodsBetween October 2005 and October 2007, 244 blood samples from patients with symptomatic blood-slide confirmed P. falciparum mono-infections attending the Aga Khan University Hospital, Karachi, or its collection units located in Sindh and Baluchistan provinces, Pakistan were collected. The genetic diversity of P. falciparum was analysed by length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) targeting block 2 of msp-1 and block 3 of msp-2, including their respective allelic families KI, MAD 20, RO33, and FC27, 3D7/IC.ResultsA total of 238/244 (98%) patients had a positive PCR outcome in at least one genetic marker; the remaining six were excluded from analysis. A majority of patients had monoclonal infections. Only 56/231 (24%) and 51/236 (22%) carried multiple P. falciparum genotypes in msp-1 and msp-2, respectively. The estimated total number of genotypes was 25 msp-1 (12 KI; 8 MAD20; 5 RO33) and 33 msp-2 (14 FC27; 19 3D7/IC).ConclusionsThis is the first report on molecular characterization of P. falciparum field isolates in Pakistan with regards to multiplicity of infection. The genetic diversity and allelic distribution found in this study is similar to previous reports from India and Southeast Asian countries with low malaria endemicity.
Malaria Journal | 2011
Najia Karim Ghanchi; Johan Ursing; Mohammad Asim Beg; Maria Isabel Veiga; Sana Jafri; Andreas Mårtensson
BackgroundScarce data are available on Plasmodium falciparum anti-malarial drug resistance in Pakistan. The aim of this study was, therefore, to determine the prevalence of P. falciparum resistance associated polymorphisms in field isolates from southern Pakistan.MethodsBlood samples from 244 patients with blood-slide confirmed P. falciparum mono-infections were collected between 2005-2007. Single nucleotide polymorphisms in the P. falciparum chloroquine resistance transporter (pfcrt K76T), multi drug resistance (pfmdr1 N86Y), dihydrofolate reductase (pfdhfr A16V, N51I, C59R, S108N, I164L) and dihydropteroate synthetase (pfdhps A436S, G437A and E540K) genes and pfmdr1 gene copy numbers were determined using PCR based methods.ResultsThe prevalence of pfcrt 76T and pfmdr1 86Y was 93% and 57%, respectively. The prevalence of pfdhfr double mutations 59R + 108N/51R + 108N was 92%. The pfdhfr triple mutation (51I, 59R, 108N) occurred in 3% of samples. The pfdhfr (51I, 59R, 108N) and pfdhps (437G, 540E) quintuple mutation was found in one isolate. Pfdhps 437G was observed in 51% and 540E in 1% of the isolates. One isolate had two pfmdr1 copies and carried the pfmdr1 86Y and pfcrt 76T alleles.ConclusionsThe results indicate high prevalence of in vivo resistance to chloroquine, whereas high grade resistance to sulphadoxine-pyrimethamine does not appear to be widespread among P. falciparum in southern Pakistan.
Emerging Infectious Diseases | 2013
Ali Bin Sarwar Zubairi; Sobia Nizami; Afsheen Raza; Vikram Mehraj; Anita Fazal Rasheed; Najia Karim Ghanchi; Zahra Nur Khaled; M. Asim Beg
To compare the severity of Plasmodium vivax malaria with that of P. falciparum malaria, we conducted a retrospective cross-sectional study of 356 adults hospitalized with malaria (2009–2011) in Pakistan. P. vivax and P. falciparum accounted for 83% and 13% of cases, respectively; 79.9% of patients with severe malaria were infected with P. vivax.
Malaria Journal | 2013
Afsheen Raza; Najia Karim Ghanchi; Ali M. Thaver; Sana Jafri; Mohammad Asim Beg
BackgroundPlasmodium vivax is the prevalent malarial species accounting for 70% of malaria burden in Pakistan; however, there is no baseline data on the circulating genotypes. Studies have shown that polymorphic loci of gene encoding antigens pvcsp and pvmsp1 can be used reliably for conducting molecular epidemiological studies. Therefore, this study aimed to bridge the existing knowledge gap on population structure on P. vivax from Pakistan using these two polymorphic genes.MethodsDuring the period January 2008 to May 2009, a total of 250 blood samples were collected from patients tested slide positive for P. vivax, at the Aga Khan University Hospital, Karachi, or its collection units located in Baluchistan and Sindh Province. Nested PCR/RFLP was performed, using pvcsp and pvmsp1 markers to detect the extent of genetic diversity in clinical isolates of P. vivax from southern Pakistan.ResultsA total of 227/250 (91%) isolates were included in the analysis while the remainder were excluded due to negative PCR outcome for P.vivax. Pvcsp analysis showed that both VK 210 (85.5%, 194/227) and VK 247 type (14.5%, 33/227) were found to be circulating in P. vivax isolates from southern Pakistan. A total of sixteen and eighty-seven genotypes of pvcsp and pvmsp-1 were detected respectively.ConclusionThis is the first report from southern Pakistan on characterization of P. vivax isolates confirming that extensively diverse pvcsp and pvmsp1 variants are present within this region. Results from this study provide valuable data on genetic diversity of P. vivax that will be helpful for further epidemiological studies.
PLOS ONE | 2013
Afsheen Raza; Najia Karim Ghanchi; Ali bin Sarwar Zubairi; Ahmed Raheem; Sobia Nizami; Mohammad Asim Beg
Background Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan. Methods and Principle Findings A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and E-selectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman’s correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria. Conclusion The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF-α, however, cytokine-mediated endothelial activation pathway is not clearly demonstrated as a mechanism of pathogenesis in complicated P.vivax malaria cases from Pakistan.
Infection, Genetics and Evolution | 2012
Wasiq Faraz Rawasia; Sankar Sridaran; Jaymin C. Patel; Joseph F. Abdallah; Najia Karim Ghanchi; John W. Barnwell; Ananias A. Escalante; Venkatachalam Udhayakumar; Mohammad Asim Beg
Chloroquine (CQ) resistance in Plasmodium falciparum has been associated with point mutations in the P. falciparum CQ resistance transporter gene (pfcrt). Previous studies have shown 4-5 independent origins for CQ resistant pfcrt alleles globally, two in South America, one each in Southeast Asia, Papua New Guinea (PNG) and Philippines. In Asia, at least two different alleles corresponding to amino acids 72-76 (CVIET and SVMNT) have been found. The CVIET allele originated in Southeast Asia and then spread to Asia and Africa as well. The SVMNT allele, originating from PNG, has been found in India. This study was undertaken to investigate the genetic background of the CQ resistant pfcrt haplotypes in Pakistan. We genotyped microsatellite markers surrounding the pfcrt gene (six different markers at -12.3, -4.8, -1, 1.5, 3.9, 18.8 kb) in 114 clinical isolates of P. falciparum collected from different regions in Pakistan. Microsatellite analysis showed a significant reduction in genetic variation among the mutant SVMNT pfcrt alleles when compared to wild type alleles. The predominant SVMNT haplotype found in this study shared the same microsatellite haplotype found in both PNG and India. Two isolates with CVIET haplotypes showed similar microsatellite background to those found in Africa and Asia. In conclusion, this study suggests that CQ resistant SVMNT haplotypes in India and Pakistan have a common ancestral origin similar to that of Papua New Guinean isolates.
Scandinavian Journal of Infectious Diseases | 2009
Najia Karim Ghanchi; Mohammad Asim Beg; Rabia Hussain
Rapid tests such as ICT Malaria are an effective field tool in determining the presence of malarial parasites but do not provide an estimate of parasite load. We have evaluated the utility of ICT for providing semi-quantitative estimates of parasite load. Circulating parasite load in the blood of patients with malaria (n =54), were compared with the circulating HRP2 protein levels. Blood was serially diluted and analysed by a rapid diagnostic test (ICT® Now P.f/P.v) for assessment of endpoint PfHRP2 antigen titres. Significant correlation was observed between parasite load and PfHRP2 antigen titres (Spearman rank; rho = 0.821; p<0.001) with plasma dilutions > 1:16 corresponding to a parasite load of 0.1% parasitaemia. Variability in haematological parameters had no effect on the antibody titres obtained with the ICT test. Rapid semi-quantitative assessment of parasite load in conjunction with the Plasmodium speciation may provide a useful bedside and field aid in the diagnosis of malaria.
Malaria Journal | 2013
Afsheen Raza; Najia Karim Ghanchi; Muhammad Shahzeb Khan; Mohammad Asim Beg
BackgroundIn Pakistan, Plasmodium vivax and Plasmodium falciparum co-exist and usage of sulphadoxine-pyrimethamine (SP) against P. falciparum exposes P. vivax to the drug leading to generation of resistant alleles. The main aim of this study was to investigate frequency distribution of drug resistance associated mutations in pvdhfr, pvdhps genes and provide baseline molecular epidemiological data on SP-associated resistance in P. vivax from southern Pakistan.MethodsFrom January 2008 to May 2009, a total of 150 samples were collected from patients tested slide-positive for P. vivax, at the Aga Khan University Hospital, Karachi, or its collection units located in Baluchistan and Sindh Province. Nested PCR using pvdhfr and pvdhps specific primers was performed for all samples.91.3% (137/150) of the samples were tested PCR positive of which 87.3% (131/137) were successfully sequenced. Sample sequencing data was analysed and compared against wild type reference sequences.ResultsIn dhfr, mutations were observed at codons F57L, S58R and S117N/T. Novel non-synonymous mutations were observed at codon positions N50I, G114R and E119K while a synonymous mutation was observed at codon position 69Y. In dhps, mutations were observed at codon position A383G and A553G while novel non-synonymous mutations were observed at codon positions S373T, E380K, P384L, N389T, V392D, T393P, D459A, M601I, A651D and A661V.ConclusionThis is the first report from southern Pakistan on SP resistance in clinical isolates of P. vivax. Results from this study confirm that diverse drug resistant alleles are circulating within this region.
Malaria Journal | 2015
Anam A Waheed; Najia Karim Ghanchi; Karim Abdur Rehman; Afsheen Raza; Syed Faisal Mahmood; Mohammad Asim Beg
In Pakistan, Plasmodium vivax contributes to major malaria burden. In this case, a pregnant woman presented with P. vivax infection and which was not cleared by chloroquine, despite adequate treatment. This is probably the first confirmed case of chloroquine-resistant vivax from Pakistan, where severe malaria due to P. vivax is already an emerging problem.
Malaria Journal | 2014
Afsheen Raza; Muhammad Shahzeb Khan; Najia Karim Ghanchi; Ahmed Raheem; Mohammad Asim Beg
BackgroundIn Pakistan, Plasmodium vivax is endemic causing approximately 70% of the malaria cases. A number of haematological changes, especially thrombocytopaenia have been reported for P. vivax. Several host factors including cell-mediated immune cells, such as IL-1, IL-6 and IL-10 have been documented for P. vivax-induced thrombocytopaenia. However, study on correlation of cytokines and thrombocytopaenia in P. vivax, particularly in patients with severe signs and symptoms has not been reported from Pakistan.MethodsA case control study to correlate TNF, IL-6 and IL-10 in healthy controls and thrombocytopaenic P. vivax-infected patients (both uncomplicated and complicated cases) from southern Pakistan was carried out during January 2009 to December 2011. One Hundred and eighty two patients presenting with microscopy-confirmed asexual P. vivax mono-infection and 100 healthy controls were enrolled in the study at Aga Khan University Hospital, Karachi. Enzyme-linked immunosorbent assay (ELISA) was performed for determination of TNF, IL-6 and IL-10 levels.ResultsOut of 182 cases, mild thrombocytopaenia (platelet count 100,000-150,000 mm3) was observed in ten (5.5%), moderate (50,000-100,000 mm3) in 93 (51.1%), and profound thrombocytopaenia (<50,000 mm3) was detected in 79 (43.4%) patients. IL-6 and IL-10 levels were found approximately three-fold higher in the mild cases compared to healthy controls. Two-fold increase in TNF and IL-10 (p < 0.0001) was observed in profound thrombocytopaenic when compared with moderate cases, while IL-6 was not found to be significantly elevated.ConclusionCytokines may have a possible role in P. vivax-induced thrombocytopaenia in Pakistani population. Findings from this study give first insight from Pakistan on the role of cytokines in P.vivax-associated thrombocytopaenia. However, further studies are required to understand the relevance of cytokines in manifestations of thrombocytopaenia in P. vivax malaria.