Nakwon Choi
Korea Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nakwon Choi.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ying Zheng; Junmei Chen; Michael Craven; Nakwon Choi; Samuel Totorica; Anthony Diaz-Santana; Pouneh Kermani; Barbara L. Hempstead; Claudia Fischbach-Teschl; José A. López; Abraham D. Stroock
Microvascular networks support metabolic activity and define microenvironmental conditions within tissues in health and pathology. Recapitulation of functional microvascular structures in vitro could provide a platform for the study of complex vascular phenomena, including angiogenesis and thrombosis. We have engineered living microvascular networks in three-dimensional tissue scaffolds and demonstrated their biofunctionality in vitro. We describe the lithographic technique used to form endothelialized microfluidic vessels within a native collagen matrix; we characterize the morphology, mass transfer processes, and long-term stability of the endothelium; we elucidate the angiogenic activities of the endothelia and differential interactions with perivascular cells seeded in the collagen bulk; and we demonstrate the nonthrombotic nature of the vascular endothelium and its transition to a prothrombotic state during an inflammatory response. The success of these microvascular networks in recapitulating these phenomena points to the broad potential of this platform for the study of cardiovascular biology and pathophysiology.
Biomaterials | 2010
Valerie L. Cross; Ying Zheng; Nakwon Choi; Scott S. Verbridge; Bryan A. Sutermaster; Lawrence J. Bonassar; Claudia Fischbach; Abraham D. Stroock
Type I collagen is a favorable substrate for cell adhesion and growth and is remodelable by many tissue cells; these characteristics make it an attractive material for the study of dynamic cellular processes. Low mass fraction (1.0-3.0 mg/ml), hydrated collagen matrices used for three-dimensional cell culture permit cellular movement and remodeling, but their microstructure and mechanics fail to mimic characteristics of many extracellular matrices in vivo and limit the definition of fine-scale geometrical features (<1 mm) within scaffolds. In this study, we worked with hydrated type I collagen at mass fractions between 3.0 and 20 mg/ml to define the range of densities over which the matrices support both microfabrication and cellular remodeling. We present pore and fiber dimensions based on confocal microscopy and longitudinal modulus and hydraulic permeability based on confined compression. We demonstrate faithful reproduction of simple pores of 50 μm-diameter over the entire range and formation of functional microfluidic networks for mass fractions of at least 10.0 mg/ml. We present quantitative characterization of the rate and extent of cellular remodelability using human umbilical vein endothelial cells. Finally, we present a co-culture with tumor cells and discuss the implications of integrating microfluidic control within scaffolds as a tool to study spatial and temporal signaling during tumor angiogenesis and vascularization of tissue engineered constructs.
Nature Protocols | 2013
John Morgan; Peter DelNero; Ying Zheng; Scott S. Verbridge; Junmei Chen; Michael Craven; Nakwon Choi; Anthony Diaz-Santana; Pouneh Kermani; Barbara L. Hempstead; José A. López; Thomas N. Corso; Claudia Fischbach; Abraham D Stroock
This protocol describes how to form a 3D cell culture with explicit, endothelialized microvessels. The approach leads to fully enclosed, perfusable vessels in a bioremodelable hydrogel (type I collagen). The protocol uses microfabrication to enable user-defined geometries of the vascular network and microfluidic perfusion to control mass transfer and hemodynamic forces. These microvascular networks (μVNs) allow for multiweek cultures of endothelial cells or cocultures with parenchymal or tissue cells in the extra-lumen space. The platform enables real-time fluorescence imaging of living engineered tissues, in situ confocal fluorescence of fixed cultures and transmission electron microscopy (TEM) imaging of histological sections. This protocol enables studies of basic vascular and blood biology, provides a model for diseases such as tumor angiogenesis or thrombosis and serves as a starting point for constructing prevascularized tissues for regenerative medicine. After one-time microfabrication steps, the system can be assembled in less than 1 d and experiments can run for weeks.
Biomaterials | 2012
Nakwon Choi; Scott S. Verbridge; Rebecca M. Williams; Jin Chen; Ju-Young Kim; Russel H. Schmehl; Cornelia E. Farnum; Warren R. Zipfel; Claudia Fischbach; Abraham D. Stroock
We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role.
Journal of the American Chemical Society | 2014
Wanxi Cai; Tae-Hee Lee; Maro Lee; Woosuk Cho; Doug Young Han; Nakwon Choi; Alex C.K. Yip; Jungkyu Choi
As a subset of the metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have potential use in practical separations as a result of flexible yet reliable control over their pore sizes along with their chemical and thermal stabilities. Among many ZIF materials, we explored the effect of thermal treatments on the ZIF-7 structure, known for its promising characteristics toward H2 separations; the pore sizes of ZIF-7 (0.29 nm) are desirable for molecular sieving, favoring H2 (0.289 nm) over CO2 (0.33 nm). Although thermogravimetric analysis indicated that ZIF-7 is thermally stabile up to ~400 °C, the structural transition of ZIF-7 to an intermediate phase (as indicated by X-ray analysis) was observed under air as guest molecules were removed. The transition was further continued at higher temperatures, eventually leading toward the zinc oxide phase. Three types of ZIF-7 with differing shapes and sizes (~100 nm spherical, ~400 nm rhombic-dodecahedral, and ~1300 nm rod-shaped) were employed to elucidate (1) thermal structural transitions while considering kinetically relevant processes and (2) discrepancies in the N2 physisorption and CO2 adsorption isotherms. The largest rod-shaped ZIF-7 particles showed a delayed thermal structural transition toward the stable zinc oxide phase. The CO2 adsorption behaviors of the three ZIF-7s, despite their identical crystal structures, suggested minute differences in the pore structures; in particular, the smaller spherical ZIF-7 particles provided reversible CO2 adsorption isotherms at ~30-75 °C, a typical temperature range of flue gases from coal-fired power plants, in contrast to the larger rhombic-dodecahedral and rod-shaped ZIF-7 particles, which exhibited hysteretic CO2 adsorption/desorption behavior.
Journal of Micromechanics and Microengineering | 2005
Myung-Suk Chun; Tae Seok Lee; Nakwon Choi
We develop a theoretical model of the electrokinetic streaming potential considering the Navier–Stokes equation coupled with the Poisson–Boltzmann equation in order to elaborate the possible applicability of the microfluidic-battery from conceptualization to system validation. The ion transport in the microchannel is described on the basis of the Nernst–Planck equation. In this study, monovalent symmetric electrolytes are considered, and the profile of fluid conductivity is derived in terms of both the concentration profile and the mobilities of anions and cations. The present simulations provide that the flow-induced streaming potential increases with increasing surface potential of microchannel wall, whereas increasing the surface conductivity reduces the streaming potential. We also present the results on the change of streaming potential with variations of the electric double layer thickness normalized by the channel radius. It is of interest to find the behavior that a lower value of ion mobility leads to the enhancement of streaming potential, which tends to develop with either increasing bulk electrolyte concentration or decreasing surface conductivity. Hence, a choice of electrolyte should be considered to obtain improved performance.
Biomicrofluidics | 2015
Jeong Ah Kim; Hong Nam Kim; Sun Kyoung Im; Seok Chung; Ji Yoon Kang; Nakwon Choi
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stokes radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.
Lab on a Chip | 2006
Myung-Suk Chun; Min Suk Shim; Nakwon Choi
To elaborate on the applicability of the electrokinetic micro power generation, we designed and fabricated the silicon-glass as well as the PDMS-glass microfluidic chips with the unique features of a multi-channel. Besides miniaturizing the device, the key advantage of our microfluidic chip utilization lies in the reduction in water flow rate. Both a distributor and a collector taking the tapered duct geometry are positioned aiming the uniform distribution of water flow into all individual channels of the chip, in which several hundreds of single microchannels are assembled in parallel. A proper methodology is developed accompanying the deep reactive ion etching as well as the anodic bonding, and optimum process conditions necessary for hard and soft micromachining are presented. It has been shown experimentally and theoretically that the silicon-based microchannel leads to increasing streaming potential and higher external current compared to those of the PDMS-based one. A proper comparison between experimental results and theoretical computations allows justification of the validity of our novel devices. It is useful to recognize that a material inducing a higher magnitude of zeta potential has an advantage for obtaining higher power density under the same external resistance.
Biomedical Microdevices | 2017
Aerim Choe; Sang Keun Ha; Inwook Choi; Nakwon Choi; Jong Hwan Sung
After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs’ efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.
Scientific Reports | 2015
Yoojin Son; Hyunjoo Jenny Lee; Jeong Yeon Kim; Hyogeun Shin; Nakwon Choi; C. Justin Lee; Eui-Sung Yoon; Euisik Yoon; Kensall D. Wise; Tae Geun Kim; Il-Joo Cho
Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.