Nalini Sadagopan
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nalini Sadagopan.
Chemistry & Biology | 2009
Kay Ahn; Douglas S. Johnson; Mauro Mileni; David Beidler; Jonathan Z. Long; Michele K. McKinney; Eranthie Weerapana; Nalini Sadagopan; Marya Liimatta; Sarah E. Smith; Scott E. Lazerwith; Cory Michael Stiff; Satwik Kamtekar; Keshab Bhattacharya; Yanhua Zhang; Stephen Swaney; Keri Van Becelaere; Raymond C. Stevens; Benjamin F. Cravatt
Endocannabinoids are lipid signaling molecules that regulate a wide range of mammalian behaviors, including pain, inflammation, and cognitive/emotional state. The endocannabinoid anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH), and there is currently much interest in developing FAAH inhibitors to augment endocannabinoid signaling in vivo. Here, we report the discovery and detailed characterization of a highly efficacious and selective FAAH inhibitor, PF-3845. Mechanistic and structural studies confirm that PF-3845 is a covalent inhibitor that carbamylates FAAHs serine nucleophile. PF-3845 selectively inhibits FAAH in vivo, as determined by activity-based protein profiling; raises brain anandamide levels for up to 24 hr; and produces significant cannabinoid receptor-dependent reductions in inflammatory pain. These data thus designate PF-3845 as a valuable pharmacological tool for in vivo characterization of the endocannabinoid system.
Journal of Pharmacology and Experimental Therapeutics | 2011
Kay Ahn; Sarah E. Smith; Marya Liimatta; David Beidler; Nalini Sadagopan; David T. Dudley; Tim Young; Paul Wren; Yanhua Zhang; Steven Swaney; Keri Van Becelaere; Jacqueline L. Blankman; Daniel K. Nomura; Shoba N. Bhattachar; Cory Michael Stiff; Tyzoon K. Nomanbhoy; Eranthie Weerapana; Douglas S. Johnson; Benjamin F. Cravatt
The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAHs catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (kinact/Ki = 40,300 M−1s−1; IC50 = 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freunds adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders.
Analytical Chemistry | 2009
Chengjie Ji; Nalini Sadagopan; Yizhong Zhang; Christopher Lepsy
Although the strategic use of enzymatic digestion combined with isotope dilution mass spectrometry has been increasingly developed and used for the absolute quantification of therapeutic and endogenous proteins in the biopharmaceutical industry over the past several years, the lack of an appropriate internal standard has become the rate-limiting step in the development of a standardized analytical approach to provide bioanalytical support for both preclinical and clinical studies. In this study, we present a universal strategy for fast development and validation (within 1-2 weeks) of a method for absolute quantification of a therapeutic monoclonal antibody in biological matrices using differential dimethyl labeling coupled with UPLC-MS/MS. Differential dimethyl labeling of tryptic peptides generated from the purified therapeutic monoclonal antibody and those derived from proteins in cynomolgus monkey serum with either d(2)- or d(0)-formaldehyde provided a fast, cost-effective, and standardized approach to generate internal standards for any surrogate peptides that are used to quantify the therapeutic monoclonal antibody in biological matrices. This labeling reaction employs inexpensive and commercially available reagents, d(0)- or d(2)-formaldehyde, to globally label the N-terminus and epsilon-amino group of Lys in a peptide via reductive amination. Moreover, the process is simple, relatively fast (<2 h reaction time), specific, and quantitative under mild reaction conditions. The chromatographic run time is 6 min per sample. The linearity of the assay for the selected monoclonal antibody was established from 1.00 to 1000 mug/mL with accuracy and precision within 15% at all concentrations. The intraday and interday assay accuracy (%RE) and coefficient of variations (CV%) are all within 15% for all QCs (2.00, 4.00, 20.0, 100, 750 mug/mL) prepared in three different serum pools from male and female cynomolgus monkeys.
Journal of Chromatography B: Biomedical Sciences and Applications | 2001
Nalini Sadagopan; Lucinda H. Cohen; Bill J. Roberts; Wendy Collard; Charles Omer
Cyclophosphamide (CP) and its metabolite, hydroxycyclophosphamide (OH-CP) have been quantitated in mouse plasma and tissue by derivatization combined with liquid chromatography-tandem mass spectrometry (LC-MS-MS). The derivatization was conducted immediately upon sample collection, to trap the OH-CP metabolite intermediate prior to further conversion to phosphoramide mustard or other reaction products. This simple and straightforward derivatization procedure, combined with sample extraction via protein precipitation, allowed quantitation of CP and the oxime derivative of OH-CP in plasma for concentrations ranging from approximately 12.5-3333 ng/ml, and in spleen tissue for concentrations of 1,250-50,000 ng/g. The short cycle time (2.5 min) of the LC-MS-MS method allowed high throughput analysis with minimal matrix interference. Mouse plasma levels were quantitated for doses of 40, 65 and 120 mg/kg; spleen concentrations were determined for mice dosed at 120 mg/kg. The CP and oxime plasma levels correlated well with dose amounts. The CP levels in the spleen and plasma were similar while the oxime levels in the spleen were significantly lower than the plasma.
Analytica Chimica Acta | 2012
Chengjie Ji; William R. Tschantz; Nathan D. Pfeifer; Mohammed Ullah; Nalini Sadagopan
OATP1B1, OATP1B3 and OATP2B1 are important members of the organic anion transporting polypeptides (OATP) family and are implicated in the hepatic disposition of endobiotics and xenobiotics. Quantitating the expression levels of human OATP1B1, OATP1B3 and OATP2B1 in in vitro systems and tissue samples could significantly improve attempts to scale up in vitro data and result in more effective in vitro-in vivo correlation of transporter-mediated effects on drug disposition, such as hepatic clearance. In the present study, a quantification method was developed, characterized, and implemented for simultaneous determination of human OATP1B1, OATP1B3 and OATP2B1 in HEK cells transfected with OATP-expressing plasmid vectors (SLCO1B1, SLCO1B3, and SLCO2B1, respectively), human hepatocytes, human brain capillary endothelial cells, and humanized mouse liver tissue using UPLC-MRM MS. Purified membrane protein standards prepared and characterized as previously reported (Protein Expr. Purif. 2008, 57, 163-71) were first used as standards for absolute quantification of the expression levels of the three human OATP membrane proteins. The specificity of the optimized MRM transitions were characterized by analyzing the tryptic digests of the membrane protein fraction of wild type HEK cells and control mouse liver tissue using the herein reported UPLC-MRM MS method. The linearity of the calibration curve spanned from 0.2 μg mL(-1) (0.040 μg mg(-1)) to 20 μg mL(-1) (4.0 μg mg(-1)), with accuracy (% RE) within 15% at all concentrations examined for all three OATPs of interest in this study. The intra- and inter-day assay accuracy (% RE) and coefficient of variations (% CV) of triplicates are all within 15% for all levels of quality control samples prepared by mixing the membrane fraction of control mouse liver tissue with the required amount of purified human OATP1B1, OATP1B3 and OATP2B1.
Drug Metabolism and Disposition | 2004
Jasminder Sahi; Ralph H. Stern; Mark Milad; Kelly A. Rose; G. Gordon Gibson; Xianxian Zheng; Linda Stilgenbauer; Nalini Sadagopan; Summer Jolley; Darryl Gilbert; Edward L. LeCluyse
Avasimibe, an acyl-CoA:cholesterol acyltransferase inhibitor, has been previously shown to be a potent inducer of CYP3A4 and multiple drug resistance protein 1. We have further characterized the drug interaction potential of avasimibe by studying the inductive and inhibitory effect of this compound on major drug-metabolizing enzymes. Enzymes known to be involved in the metabolism of drugs likely to be coadministered with avasimibe, such as CYP1A1/2, CYP2C, and CYP2B6, were evaluated further by microarray analysis, Western immunoblotting, and activity assays, using rifampicin and β-naphthoflavone as positive controls. No change was observed in CYP1A1/2 mRNA or activity levels after avasimibe treatment. Differential induction of CYP2C9- and CYP2B6-immunoreactive protein and activity was observed depending on drug concentration and donor. Microarray analysis showed a similar increase in CYP2C and CYP2B6 mRNA levels. The inhibition potential of avasimibe on the major drug-metabolizing enzymes was assessed using pooled human liver microsomes. Avasimibe inhibited CYP2C9 (IC50 2.9 μM), CYP1A2 (IC50 13.9 μM), and CYP2C19 (IC50 26.5 μM). A clinical drug interaction study was conducted to determine whether avasimibe might interact with the CYP2C9 substrate warfarin. Volunteers received 750 mg of avasimibe and showed a 54.2% reduction in trough concentrations of S-warfarin and decreased prothrombin times by 12, 15, 19, and 21% on days 6 through 9, respectively. These results demonstrate that avasimibes inductive spectrum resembles that of rifampin.
Bioorganic & Medicinal Chemistry Letters | 2013
Mark Stephen Plummer; Joseph A. Cornicelli; Howard Roark; Donald James Skalitzky; Charles Stankovic; Susan Bove; Jayvardhan Pandit; Annise Paige Goodman; James Lester Hicks; Aurash Shahripour; David Beidler; Xiao Kang Lu; Brian Sanchez; Christopher Whitehead; Ron Sarver; Timothy Braden; Richard Gowan; Xi Qiang Shen; Katherine Welch; Adam Ogden; Nalini Sadagopan; Heidi Baum; Howard Miller; Craig Banotai; Cindy Spessard; Sandra Lightle
We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.
Bioorganic & Medicinal Chemistry Letters | 2013
Mark Stephen Plummer; Joseph A. Cornicelli; Howard Roark; Donald James Skalitzky; Charles Stankovic; Susan Bove; Jayvardhan Pandit; Annise Paige Goodman; James Lester Hicks; Aurash Shahripour; David Beidler; Xiao Kang Lu; Brian Sanchez; Christopher Whitehead; Ron Sarver; Timothy Braden; Richard Gowan; Xi Qiang Shen; Katherine Welch; Adam Ogden; Nalini Sadagopan; Heidi Baum; Howard Miller; Craig Banotai; Cindy Spessard; Sandra Lightle
Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F=78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3h after a single, 10 mg/kg, subcutaneous dose.
Journal of Pharmacology and Experimental Therapeutics | 2004
Jessica B. Mills; Kelly Rose; Nalini Sadagopan; Jasminder Sahi; Sonia M. de Morais
ACS Medicinal Chemistry Letters | 2011
Douglas S. Johnson; Cory Michael Stiff; Scott E. Lazerwith; Suzanne Ross Kesten; Lorraine Kathleen Fay; Mark Morris; David Beidler; Marya Liimatta; Sarah E. Smith; David T. Dudley; Nalini Sadagopan; Shobha N. Bhattachar; Stephen J. Kesten; Tyzoon K. Nomanbhoy; Benjamin F. Cravatt; Kay Ahn