Nam-Hyeong Kim
Jeju National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nam-Hyeong Kim.
Journal of Korean navigation and port research | 2010
Nam-Hyeong Kim; Hyeon-Cheol Yun; Young-Teck Hur
When the numerical analysis is carried out, it is necessary to set proper elements as a feature of analysis domains for more accurate simulations. In this study, Distinct Element Method(DEM) is applied, only considering repulsive force and tensile force except for frictional force and resisting force of particle. When the filled particles with initial Quad-tree type is relocated by DEM, a blank space existing among the particles can be minimized because the shape of particle is circular. Finally, it is the effective feature that the centroidal disposion of the particles is similar to an equilateral triangle. Triangular mesh are formed by using the Delaunay triangular technique on these relocated particles, the quality of triangular mesh is more improved by carrying out Laplace interpolations. The compared result of Aspect Ratio before and after the Laplace interpolation is shown that although the quality of triangular mesh made by DEM is good, the later triangular mesh are higher quality than the formers. In this study, although the developed technique takes a longer calculational time than the previous technique to generate triangular mesh, it is considered that the applicable possibility is very high in the generation of finite element mesh about wave analysis and various numerical simulation to need a complex or reappearance of exact topography.
Journal of Korean navigation and port research | 2008
Nam-Hyeong Kim; Tan Ngoc Than Cao
The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Greens second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.
Journal of Korean navigation and port research | 2007
Nam-Hyeong Kim; Ji-Hun Park; Hyun-Woo Kang
The effect of seasonal wind on the tidal circulation in Jeju harbor was examined by using a numerical shallow water model. A finite element for analyzing shallow water flow is presented. The Galerkin method is employed for spatial discretization. Two step explicit finite element scheme is used to discretize the time function, which has advantage in problems treating large numbers of elements and unsteady state. The numerical simulation is compared with three cases; Case 1 does not consider the effect of wind, Case 2 and Case 3 consider the effect of summer and winter seasonal wind, respectively. According to result considering effect of seasonal wind, velocity of current vector shows slightly stronger than that of case 1 in the flow field. It can be concluded that the present method is a useful and effective tool in tidal current analysis.
Journal of Korean navigation and port research | 2015
Nam-Hyeong Kim; Myung-Jin Koh
In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.
Journal of Korean navigation and port research | 2013
Nam-Hyeong Kim; Su-Min Woo
Wave profiles coming with oblique angle to trapezoidal submerged breakwater on the porous seabed are computed numerically by using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structure. When compared with the existing results on the oblique incident wave, the results of this study show good agreement. The fluctuation of wave profiles is increased in the rear of the submerged breakwater due to the increase of the transmission coefficient, as the incident angle increases. In addition, in the case of the wave profiles passing over the submerged breakwater on porous seabed, it is able to verify that the attenuation of wave height occurs more significantly due to the wave energy dissipation than that of passing over the submerged breakwater on the impermeable seabed. The results indicate that wave profile own high dependability regarding the change of oblique incident waves and porous seabed. Therefore, the results of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and porous seabed in real sea environment.
Journal of Korean navigation and port research | 2012
Nam-Hyeong Kim; Tan Ngooc Than Cao; Soonbo Yang
In this paper, the boundary element method is applied to solve the diffraction of waves by multiple vertical cylinders under the assumption of linear wave theory. A numerical analysis by boundary element method is based on Greens theorem and introduced to an integral equation for the fluid velocity potential around the cylinders. The numerical results obtained in this study are compared with the experimental data and the results of the theory using multiple scattering techniques. The comparisons show strong agreement. This numerical analysis method developed by using boundary element method could be used broadly for the design of various offshore structures to be constructed in coastal zones in the future.
Journal of Korean navigation and port research | 2010
Nam-Hyeong Kim; Hyeon-Cheol Yun; Bon-Soo Koo
항내 정온도를 산정 할 때에는 불규칙파의 회절과 반사가 정확하게 계산되어지는 것이 중요하다. 본 연구에서 수치모형의 기본방정식은 완경사 방정식을 사용하였으며, 이는 파랑 거동에 큰 영향을 미치는 비선선형성을 고려할 수 있는 장점을 가지고 있다. 그리고, 삼각격자망은 유한요소법을 이용하여 생성되었다. 비선형성의 효과를 검증하기 위하여 본 연구에서 개발된 수치모형의 계산결과들은 다른 연구자들의 실험결과 및 수치결과와 비교되어졌다. 그 결과, 비선형성의 파랑을 고려한 경우가 고려하지 않은 경우보다 파랑해석에 더 정확하다는 것을 보여주었다. 본 모형을 적용하기 위하여 해수교환방파제가 설치되어 있는 주문진항에 파고분포가 계산되어졌다. 수치해석결과, 이상 파랑이 해수교환방파제를 통한 유입 시에 항내 파고분포의 결과들이 높게 나타났다. 그러므로, 항내 파고를 낮게 유지하기 위해서는 이상 파랑의 유입을 차단할 수 있는 시설이 필요되어질 것으로 사료된다. 【When estimating the calmness in a harbor, it is important that diffraction and reflection of irregular waves should be exactly calculated. The basic equation of the numerical model in this study was used Mild-slope equation, which has the advantage of which non-linearity with great influence for the wave behavior can be considered, and a triangular mesh was generated by using finite element method. So as to verify the nonlinear effects, the results of the numerical model developed in this study are compared with the experimental and numerical results by other researchers. As a result, it is shown that the results in case of considering nonlinear wave are more exact for wave analysis than in case of not considering nonlinear wave. In order to apply this model, wave height distributions in Jumunjin fishery port installed a seawater-exchange breakwater are computed. From the results of this numerical analysis, when abnormal waves are intruded through the seawater-exchange breakwater, the results of the wave height distributions in the harbor are highly presented. Therefore, in order to get wave height low in the harbor, it is considered that the facility with the ability to protect the inflow of abnormal waves is needed.】
Journal of Korean navigation and port research | 2003
Nam-Hyeong Kim; Ji-Hun Park
The numerical model of the flow analysis by finite element technique is described. The Galerkin method is employed for spatial discretization Two step explicit finite element scheme is used to discretize the time function, which has advantage in problems treating large numbers of elements and unsteady state. Two dimensional hydrodynamic model considering moving boundary condition is developed. Also it applied flow model which develop on flow portion of ideal fluid in the model flume and verified, and the results of this study confirm the efficiency of moving boundary treatment in Jeju harbor. The computed results have shown the good adaptability of moving boundary condition From these studies, it can be concluded that the present method is a useful and effective tool in tidal flow analysis.
Ksce Journal of Civil Engineering | 2013
Nam-Hyeong Kim; Jung Woon Jin
Journal of Ocean Engineering and Technology | 2003
Nam-Hyeong Kim; Young-Teck Hur