Namasivayam Dhenadhayalan
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Namasivayam Dhenadhayalan.
Scientific Reports | 2015
Namasivayam Dhenadhayalan; King-Chuen Lin
Investigations were carried out on the carbon-dots (C-dots) based fluorescent off - on (Fe3 + - S2O32−) and on - off (Zn2 + - PO43−) sensors for the detection of metal ions and anions. The sensor system exhibits excellent selectivity and sensitivity towards the detection of biologically important Fe3 + , Zn2 + metal ions and S2O32−, PO43− anions. It was found that the functional group on the C-dots surface plays crucial role in metal ions and anions detection. Inspired by the sensing results, we demonstrate C-dots based molecular logic gates operation using metal ions and anions as the chemical input. Herein, YES, NOT, OR, XOR and IMPLICATION (IMP) logic gates were constructed based on the selection of metal ions and anions as inputs. This carbon-dots sensor can be utilized as various logic gates at the molecular level and it will show better applicability for the next generation of molecular logic gates. Their promising properties of C-dots may open up a new paradigm for establishing the chemical logic gates via fluorescent chemosensors.
Journal of Physical Chemistry B | 2012
Namasivayam Dhenadhayalan; Chellappan Selvaraju
The dynamics and mechanism of the photoinduced electron transfer (PET) reaction between coumarin 307 (C307) and aromatic amines in micelles have been studied by using steady-state (S-S) and time-resolved (T-R) absorption and fluorescence spectroscopy. Based on the fluorescence quenching time scale, PET in micelles is grouped into two types: (i) ultrafast electron transfer (ET) due to the close contact of the donor and acceptor in micelles and (ii) diffusion averaged dynamic electron transfer (DADET) which is controlled by the diffusion of the reactants in micellar Stern layer and diffusion of the micelles. The DADET does not affect the photoionization and solvation processes whereas ultrafast ET competes with the photoionization and faster than the solvation process. Both ultrafast and DADET shows Marcus inversion in the ET rates at the similar exergonicity and indicates that the role of diffusion and solvent reorganization is negligible toward the activation barrier for the ET reaction in micelles. The activation barrier for the ET reactions in micelles is mainly due to intramolecular reorganization energy. The intramolecular reorganization energy must be higher in CTAB due to the photoionization and subsequent recombination and also involvement of triplet state in the PET. The ET reaction between coumarin radical cation and amine is reported for the first time in the C307-amine systems in micelles which are confirmed by the effect on amine concentration of the decay of coumarin radical cation and the dynamics of the ground-state recovery of C307. A mechanism for the PET reaction between C307-amine systems is proposed in micelles including photoionization, ultrafast and dynamic ET, and solvation dynamics.
Journal of Materials Chemistry | 2015
Pitchaimani Veerakumar; Namasivayam Dhenadhayalan; King-Chuen Lin; Shang-Bin Liu
Carbon mesoporous materials (CPMs) have great potential in the field of heterogeneous catalysis. Highly dispersed ruthenium nanoparticles (RuNPs) embedded in three dimensional (3D) CPMs as catalysts with a high surface area (1474 m2 g−1) were prepared by microwave-thermal reduction processes. Characterization technologies including X-ray diffraction (XRD), N2 adsorption/desorption isotherm measurements, field emission transmission electron microscopy (FE-TEM), thermogravimetric analysis (TGA), hydrogen temperature-programmed reduction (H2-TPR), Raman spectroscopy and 13C solid state cross polarization and magic angle spinning (13C CP/MAS) NMR spectroscopy were utilized to scrutinize the catalysts. It was revealed that the Ru/CPM catalysts exhibited a highly ordered 3D mesoporous structure and a large surface area and were widely used as catalysts for reduction reactions. Reduction of p-nitroaniline (p-NA) and crystal violet (CV) using NaBH4 with the use of this catalyst was studied by means of UV-vis spectroscopy. Here, NaBH4 acts as a hydrogen donor. This catalyst shows an excellent catalytic activity towards reduction of p-NA and CV dye at room temperature. Due to the promising properties of CPMs, they can be utilized to fabricate 3D carbon-based materials for a variety of novel applications.
Journal of Physical Chemistry B | 2011
Namasivayam Dhenadhayalan; Chellappan Selvaraju; P. Ramamurthy
Photoionization, fluorescence time-dependent Stokes shift (TDSS), and rotational dynamics of coumarin 307 (C307) have been investigated in soft matter system such as micelles using time-resolved transient absorption and fluorescence spectroscopy. Photoionization of C307 leads to the formation of coumarin radical cation and hydrated electron, which were characterized by their respective transient absorption. The photoionization yields are significantly higher in anionic sodium dodecyl sulfate (SDS) micelle than in cationic cetyltrimethylammonium bromide (CTAB) and neutral Triton X-100 (TX-100) micelles, indicating the influence of micellar surface charge on the efficient separation of radical cation-hydrated electron pair. The CTAB micelle favors the recombination of radical cation and hydrated electron leading to the formation of triplet state of C307, which causes a decrease in the photoionization yield. C307 exhibits TDSS in all micelles; the time evolution and the magnitude of the TDSS depend on nature of the micelle. In TX-100 micelles, the decay of the TDSS exhibits ultraslow component (165 ns) and is affected by the presence of electron scavengers. The ultraslow component in TX-100 micelle originates from the recombination of radical cation-hydrated electron, which results in the formation of twisted intramolecular charge transfer (TICT) state; such formation of TICT state was not observed in SDS and CTAB micelles. To the best of our knowledge, this is the first report where the radical-ion pair recombination dynamics is probed using TDSS in combination with time-resolved transient absorption studies. The activation energy for the solvent relaxation and radical-ion pair (solvent separated) recombination process was found to be 6.1 and 3.0 kcal mol(-1), respectively. Temperature effect on TDSS in TX-100 micelles confirmed the increase in the water hydration, and size of the micelle influences the relative contribution of the solvation and radical-ion pair recombination dynamics toward the total TDSS. We propose that TDSS observed in neutral micelles and reported in other biomolecules such as proteins by the 7-amino coumarin probe is not only due to the solvation dynamics alone but also due to the radical-ion pair recombination dynamics.
RSC Advances | 2015
Hsin-Lung Lee; Namasivayam Dhenadhayalan; King-Chuen Lin
We report a ratiometric fluorescent metal ion sensor based on the mechanism of fluorescence resonance energy transfer (FRET) between synthesized 15-crown-5-ether capped CdSe/ZnS quantum dots (QDCE) and 15-crown-5-ether attached rhodamine B (RBCE) in pH 8.3 buffer solution. Fluorescence titration with different metal ions in pH 8.3 buffer solution of the QDCE–RBCE conjugate showed a decrease and an increase in the fluorescence intensity for QDCE and RBCE moieties respectively due to FRET from QDCE to RBCE. This sensor system shows excellent selectivity towards K+ ions resulting in increasing efficiency of FRET. Energy transfer efficiency depends on the affinity between metal ions and crown ether functionalized with QDCE/RBCE. The detailed analysis of FRET was explored. This water soluble ratiometric sensor system can act as a good FRET probe for sensing applications especially in biological systems.
Sensors and Actuators B-chemical | 2018
Balamurugan Thirumalraj; Namasivayam Dhenadhayalan; Shen-Ming Chen; Yan-Jin Liu; Tse-Wei Chen; Po-Huang Liang; King-Chuen Lin
Abstract A highly sensitive and selective fluorogenic sensing of L-Cysteine (L-Cys) was implemented based on gelatin stabilized gold nanoparticles decorated reduced graphene oxide (rGO/Au) nanohybrid. The rGO/Au nanohybrid was prepared by the one-pot hydrothermal method and well characterized by different physiochemical techniques. The nanohybrid exhibits a weak fluorescence of rGO due to the energy transfer from the rGO to Au NPs. The rGO/Au nanohybrid shows enhanced fluorescence activity due to the restoration of quenched fluorescence of rGO/Au nanohybrid in presence of L-Cys. The rGO/Au nanohybrid exhibits much lower detection limit of 0.51 nM for L-Cys with higher selectivity. The fluorescence sensing mechanism arose from the fluorescence recovery due to the stronger interaction between Au NPs and L-Cys, and consequently, the energy transfer was prevented between rGO and Au NPs. The practicability of rGO/Au sensor was implemented by invitro bioimaging measurements in Colo-205 (colorectal adenocarcinoma) and MKN-45 (gastric carcinoma) cancer live cells with excellent biocompatibility.
Journal of Physical Chemistry C | 2016
Namasivayam Dhenadhayalan; King-Chuen Lin; Raghupathy Suresh; P. Ramamurthy
Solar Energy Materials and Solar Cells | 2012
Shailesh N. Sharma; Tanvi Vats; Namasivayam Dhenadhayalan; P. Ramamurthy; A.K. Narula
ACS Applied Materials & Interfaces | 2016
Namasivayam Dhenadhayalan; Hsin-Lung Lee; Kanchan Yadav; King-Chuen Lin; Yih-Tyng Lin; Agnes H. H. Chang
ChemistrySelect | 2017
Venkatesan Srinivasan; Namasivayam Dhenadhayalan; King-Chuen Lin; Madhavan Jaccob; A. Kathiravan