Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nami Yamada is active.

Publication


Featured researches published by Nami Yamada.


Cancer Letters | 2011

MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells.

S. Noguchi; Takashi Mori; Yuki Hoshino; Kohji Maruo; Nami Yamada; Yukio Kitade; Tomoki Naoe; Yukihiro Akao

MicroRNA (miR)-143 and -145 were down-regulated in human bladder cancer T24 cells. The enforced expression of miR-143 induced growth-suppression in T24 cells through down-regulation of ERK5 and Akt expression at translational level, and chemically-modified synthetic miR-143 (miR-143/BP) exhibited a greater growth inhibitory effect than wild-type miR-143. In addition, the synthetic miR-143/BP induced apoptotic cell death in some of the transfected cells. Furthermore, co-treatment with the synthetic miR-143/BP and cisplatin showed the additive growth-suppressing effect on T24 cells. These findings suggest that the chemically-modified synthetic miR-143 functions as a tumor suppressor in T24 cells by targeting ERK5 and/or Akt.


Journal of Biological Chemistry | 2012

Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells.

Shunsuke Noguchi; Takashi Mori; Yusami Otsuka; Nami Yamada; Yuki Yasui; Junya Iwasaki; Minami Kumazaki; Kohji Maruo; Yukihiro Akao

Background: MicroRNA-203 is down-regulated, and its exogenous expression inhibits cell growth in human melanoma cells. Results: MicroRNA-203 induced senescence by cell cycle arrest through targeting E2F3. Conclusion: MicroRNA-203 is a novel senescence-associated microRNA in melanoma cells. Significance: This study has revealed the relationship between senescence and carcinogenesis in melanoma cells with respect to dysregulation of anti-oncogenic microRNA-203. MicroRNAs regulate gene expression by repressing translation or directing sequence-specific degradation of their complementary mRNA. We recently reported that miR-203 is down-regulated, and its exogenous expression inhibits cell growth in canine oral malignant melanoma tissue specimens as well as in canine and human malignant melanoma cells. A microRNA target database predicted E2F3 and ZBP-89 as putative targets of microRNA-203 (miR-203). The expression levels of E2F3a, E2F3b, and ZBP-89 were markedly up-regulated in human malignant melanoma Mewo cells compared with those in human epidermal melanocytes. miR-203 significantly suppressed the luciferase activity of reporter plasmids containing the 3′-UTR sequence of either E2F3 or ZBP-89 complementary to miR-203. The ectopic expression of miR-203 in melanoma cells reduced the levels of E2F3a, E2F3b, and ZBP-89 protein expression. At the same time, miR-203 induced cell cycle arrest and senescence phenotypes, such as elevated expression of hypophosphorylated retinoblastoma and other markers for senescence. Silencing of E2F3, but not of ZBP-89, inhibited cell growth and induced cell cycle arrest and senescence. These results demonstrate a novel role for miR-203 as a tumor suppressor acting by inducing senescence in melanoma cells.


Cancer Letters | 2013

Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways

Shunsuke Noguchi; Yuki Yasui; Junya Iwasaki; Minami Kumazaki; Nami Yamada; Seiji Naito; Yukihiro Akao

We recently reported that both microRNA (miR)-143 and -145 are downregulated in human bladder cancer T24 cells and that miR-143 targets ERK5. In this study, we assessed the anti-tumor effects of combination treatment with miR-143 and -145 on bladder cancer cell lines T24, SNK57, and NKB1, in which the expression levels of miR-143 and -145 are downregulated. The ectopic expression of both miR-143 and -145 led to a significantly synergistic growth inhibition of T24 and NKB1 cells, but not that of SNK57 cells with the levels of miR-143 and -145 higher than those in T24 and NKB1 cells. The MAPK signaling pathway in NKB1 cells and both PI3K/Akt and MAPK signaling pathways in T24 cells were synergistically repressed by the co-treatment with miR-143 and -145. We newly elucidated that miR-143 targeted akt and that miR-145 targeted integrin-linked kinase (ilk) in T24 cells based on the results of a luciferase activity assay. Silencing of ilk significantly inhibited the growth of all the bladder cancer cells tested. Also, the level of phosphorylated ERK1/2 in T24 cells and that of phosphorylated Akt in SNK57 and NKB1 cells were decreased by ilk silencing. This study has provided novel important evidence with regard to the functions of anti-oncogenic miR-143 and -145 and also suggests the possible use of miR-143 and -145 for combination replacement therapy in cancers in which both miRNAs are downregulated.


Biochimica et Biophysica Acta | 2014

Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells

Nami Yamada; Nonoka Tsujimura; Minami Kumazaki; Haruka Shinohara; Kohei Taniguchi; Yoshihito Nakagawa; Tomoki Naoe; Yukihiro Akao

Emerging studies on circulating microRNAs (miRNAs) or microvesicles (MVs) have shown the potential of them to be novel biomarkers and therapeutic targets for cancer. However, the biological roles of these miRNAs and MVs have not been validated yet. To determine the biological significance of MVs, we used human colorectal cancer cells as the MV donor and endothelial cells (HUVECs) as the MV recipient and demonstrated the transfer of colorectal cancer cell-derived MVs (CRC-MVs) to HUVECs and evaluated the roles of these MVs and their cargo in tumor angiogenesis. Consequently, the incubation of HUVECs with CRC-MVs promoted the proliferation, migration, and tube formation activities of these cells. Among the cargoes shuttled by the MVs, miR-1246 and TGF-β were considered to be responsible for the pro-angiogenic function of MVs by activating Smad 1/5/8 signaling in the HUVECs. These results suggest that colorectal cancer cells secreted MVs to contribute to tumor angiogenesis.


Journal of Nutritional Biochemistry | 2013

Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells

Minami Kumazaki; Shunsuke Noguchi; Yuki Yasui; Junya Iwasaki; Haruka Shinohara; Nami Yamada; Yukihiro Akao

Much evidence indicates that various naturally occurring compounds have an anti-cancer effect, but the detailed mechanisms are not well understood. In this study, we selected anti-cancer phytochemicals such as epigallocatechin-3-gallate (EGCG), resveratrol (RES) and α-mangostin (α-M), all of which are well-characterized chemopreventive agents. We sought to elucidate the mechanism of their anti-cancer effects and the synergistic effects obtained by combined treatment with the anti-cancer drug 5-fluorouracil (5-FU) in three human colon cancer cell lines. The numbers of viable cells were consistently decreased by the treatment with EGCG, RES or α-M at more than 10 μM in all three cell lines tested. All compounds mainly induced apoptosis and suppressed the PI3K/Akt signaling pathway. Additionally, α-M, which had the greatest PI3K/Akt-suppressing activity, also suppressed MAP kinase (MAPK)/Erk1/2 signaling. Importantly, the combination treatment with RES and 5-FU induced a remarkably synergistic enhancement of growth inhibition and apoptosis through the additional suppression of the MAPK/Erk1/2 signaling pathway in colon cancer DLD-1 cells. Interestingly, RES increased the intracellular expression level of miR-34a, which down-regulated the target gene E2F3 and its downstream Sirt1, resulting in growth inhibition. These findings indicate that these compounds functioned as chemosensitizers when combined with anti-cancer drugs through the modulation of apoptotic and growth-related signaling pathways. Also, RES exerted its anti-cancer activity in part through a newly defined mechanism, i.e., the miR-34a/E2F3/Sirt1 cascade.


Cancer Letters | 2013

Tumor-suppressive microRNA-145 targets catenin δ-1 to regulate Wnt/β-catenin signaling in human colon cancer cells

Nami Yamada; Shunsuke Noguchi; Takashi Mori; Tomoki Naoe; Kohji Maruo; Yukihiro Akao

The constitutive activation of Wnt/β-catenin signaling plays a central role in colon cancer. MiR-145 was earlier identified as one of the microRNAs (miRNAs) down-regulated in colon cancer cells. However, the role of miR-145 in the Wnt/β-catenin signaling pathway is poorly understood. Here, we demonstrated that miR-145 played a pivotal role in the Wnt/β-catenin signaling pathway by perturbing the intracellular translocation of β-catenin in human colon cancer cells. The ectopic expression of miR-145 inhibited the growth of DLD-1 cells by disturbing β-catenin translocation into the nucleus, thereby leading to the down-regulation of LEF/TCF transcriptional target genes c-Myc and CyclinD1. We further demonstrated that miR-145 directly targeted catenin δ-1, contributing to the aberrant translocation of β-catenin through impaired nuclear shuttling with p21-activated kinase 4 (PAK4). These findings uncover a novel role of miR-145 in modulating intracellular translocation of β-catenin on Wnt/β-catenin signaling pathway.


Cancer Letters | 2015

MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer

Kohei Taniguchi; Nobuhiko Sugito; Minami Kumazaki; Haruka Shinohara; Nami Yamada; Yoshihito Nakagawa; Yuko Ito; Yoshinori Otsuki; Bunji Uno; Kazuhisa Uchiyama; Yukihiro Akao

Altered levels and functions of microRNAs (miRs) have been associated with carcinogenesis. In this study, we investigated the role of miR-124 in colorectal adenoma (CRA) and cancer (CRC). The expression levels of miR-124 were decreased in CRA (81.8%) and CRC (57.6%) in 55 clinical samples. The ectopic expression of miR-124 induced apoptosis and autophagy in colon cancer cells. Also, miR-124 targeted polypyrimidine tract-binding protein 1 (PTB1), which is a splicer of pyruvate kinase muscles 1 and 2 (PKM1 and PKM2) and induced the switching of PKM isoform expression from PKM2 to PKM1. Also, siR-PTB1 induced drastic apoptosis in colon cancer cells. Furthermore, we found that the ectopic expression of miR-124 enhanced oxidative stress and the miR-124/PTB1/PKM1/PKM2 axis constituted a feedback cascade. Finally, we showed that intratumor injection of miR-124 and siR-PTB1 induced a tumor-suppressive effect in xenografted mice. The axis was established by both in vitro and in vivo experiments to function in human colorectal cancer cells. These findings suggest that miR-124 acts as a tumor-suppressor and a modulator of energy metabolism through a PTB1/PKM1/PKM2 feedback cascade in human colorectal tumor cells.


Journal of Investigative Dermatology | 2014

MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b.

Shunsuke Noguchi; Minami Kumazaki; Yuki Yasui; Takashi Mori; Nami Yamada; Yukihiro Akao

MicroRNA (miR)-203 is known to be downregulated and to act as an anti-oncomir in melanoma cells. At present, we found that exogenous miR-203 increased pigmentation and protein expression levels of the melanoma antigen recognized by T cells (Melan-As/MART1s) and/or tyrosinase (TYR) in the human melanoma cells tested. Inversely, treatment with an inhibitor of miR-203 downregulated the expression level of TYR. The target gene of miR-203 involved in the mechanism was kinesin superfamily protein 5b (kif5b), which was revealed by gene silencing using short interfering RNA and luciferase activity assay. Furthermore, immunocytochemistry showed obvious accumulation of melanosomes around nuclei of human melanoma Mewo cells transfected with miR-203 or siR-kif5b. Importantly, treatment with the miR-203 inhibitor, but not miR-203, exhibited effects on human epidermal melanocytes isolated from lightly pigmented adult skin similar to those on melanoma cells. In addition, the data indicated that exogenous miR-203 also negatively regulated the cAMP response element-binding protein 1 (CREB1)/microphthalmia-associated transcription factor (MITF)/Rab27a pathway, which is one of the main pathways active in melanoma cells. In conclusion, our data indicated that anti-oncogenic miR-203 had a pivotal role in melanoma through reducing melanosome transport and promoting melanogenesis by targeting kif5b and through negative regulation of the CREB1/MITF/Rab27a pathway.


Veterinary and Comparative Oncology | 2013

MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas

S. Noguchi; Takashi Mori; Yuki Hoshino; Nami Yamada; Kohji Maruo; Yukihiro Akao

Malignant melanoma (MM) is one of the most aggressive cancers in dogs and in humans. However, the molecular mechanisms of its development and progression remain unclear. Presently, we examined the expression profile of microRNAs (miRs) in canine oral MM tissues and paired normal oral mucosa tissues by using the microRNA-microarray assay and quantitative RT-PCR. Importantly, a decreased expression of miR-203 was significantly associated with a shorter survival time. Also, miR-203 and -205 were markedly down-regulated in canine and human MM cell lines tested. Furthermore, the ectopic expression of miR-205 had a significant inhibitory effect on the cell growth of canine and human melanoma cells tested by targeting erbb3. Our data suggest that miR-203 is a new prognostic factor in canine oral MMs and that miR-205 functions as a tumour suppressor by targeting erbb3 in both canine and human MM cells.


International Journal of Molecular Sciences | 2014

Extracellular Disposal of Tumor-Suppressor miRs-145 and -34a via Microvesicles and 5-FU Resistance of Human Colon Cancer Cells

Yukihiro Akao; Fiona Khoo; Minami Kumazaki; Haruka Shinohara; Kohei Miki; Nami Yamada

The dysregulation of microRNA (miRNA) expression causes various kinds of diseases. Especially, alterations in miRNA expression levels are frequently observed in human tumor cells and are associated with cancer pathogenesis. Earlier we established Fluorouracil (5-FU)-resistant human colon cancer DLD-1 cells (DLD-1/5FU) from parental 5-FU- sensitive DLD-1 cells. In the present study, we examined the expression of miRNA in each cell line and in its extracellular microvesicles (MVs) before and after treatment with 5-FU. The nascent RNAs of anti-oncogenic miR-34a and -145 labeled with EU in both cells were proved to be transferred into MVs in both cell lines. The levels of miR-34a and -145 in the cells and in their MVs were not largely different in the two cell lines, and a substantial amount of both miRNAs was secreted by both cell lines even in the steady-state condition. The exposure of both cell lines to 5-FU significantly increased the intracellular levels of miR-145 and miR-34a in the 5-FU-sensitive DLD-1 cells, whereas the level of neither miR was elevated in the DLD-1/5FU cells. Interestingly, the amount of miR-145 detected in the small MVs shed into the medium of the parental cells was reduced after the treatment with 5-FU. On the other hand, the intracellular expression of miR-34a in the DLD-1/5FU cells was down-regulated compared with that in the parental DLD-1 cells even in the steady-state condition. As to the miR-34a secreted into MVs, the increase in the level in DLD-1/5FU cells was greater than that in the parental DLD-1 cells after the treatment with 5-FU. Thus, the intra- and extracellular miR-145 and -34a were closely associated with 5-FU resistance, and the resistance was in part due to the enhanced secretion of miR-145 and -34a via MVs, resulting in low intracellular levels of both miRNAs.

Collaboration


Dive into the Nami Yamada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Ito

Osaka Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge