Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Namiki Mitani is active.

Publication


Featured researches published by Namiki Mitani.


Nature | 2006

A silicon transporter in rice

Jian Feng Ma; Kazunori Tamai; Naoki Yamaji; Namiki Mitani; Saeko Konishi; Maki Katsuhara; Masaji Ishiguro; Yoshiko Murata; Masahiro Yano

Silicon is beneficial to plant growth and helps plants to overcome abiotic and biotic stresses by preventing lodging (falling over) and increasing resistance to pests and diseases, as well as other stresses. Silicon is essential for high and sustainable production of rice, but the molecular mechanism responsible for the uptake of silicon is unknown. Here we describe the Low silicon rice 1 (Lsi1) gene, which controls silicon accumulation in rice, a typical silicon-accumulating plant. This gene belongs to the aquaporin family and is constitutively expressed in the roots. Lsi1 is localized on the plasma membrane of the distal side of both exodermis and endodermis cells, where casparian strips are located. Suppression of Lsi1 expression resulted in reduced silicon uptake. Furthermore, expression of Lsi1 in Xenopus oocytes showed transport activity for silicon only. The identification of a silicon transporter provides both an insight into the silicon uptake system in plants, and a new strategy for producing crops with high resistance to multiple stresses by genetic modification of the roots silicon uptake capacity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

Jian Feng Ma; Naoki Yamaji; Namiki Mitani; Xiao-Yan Xu; Yu-Hong Su; Steve P. McGrath

Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.


Nature | 2007

An efflux transporter of silicon in rice

Jian Feng Ma; Naoki Yamaji; Namiki Mitani; Kazunori Tamai; Saeko Konishi; Toru Fujiwara; Maki Katsuhara; Masahiro Yano

Silicon is an important nutrient for the optimal growth and sustainable production of rice. Rice accumulates up to 10% silicon in the shoot, and this high accumulation is required to protect the plant from multiple abiotic and biotic stresses. A gene, Lsi1, that encodes a silicon influx transporter has been identified in rice. Here we describe a previously uncharacterized gene, low silicon rice 2 (Lsi2), which has no similarity to Lsi1. This gene is constitutively expressed in the roots. The protein encoded by this gene is localized, like Lsi1, on the plasma membrane of cells in both the exodermis and the endodermis, but in contrast to Lsi1, which is localized on the distal side, Lsi2 is localized on the proximal side of the same cells. Expression of Lsi2 in Xenopus oocytes did not result in influx transport activity for silicon, but preloading of the oocytes with silicon resulted in a release of silicon, indicating that Lsi2 is a silicon efflux transporter. The identification of this silicon transporter revealed a unique mechanism of nutrient transport in plants: having an influx transporter on one side and an efflux transporter on the other side of the cell to permit the effective transcellular transport of the nutrients.


The Plant Cell | 2009

A Bacterial-Type ABC Transporter Is Involved in Aluminum Tolerance in Rice

Chao Feng Huang; Naoki Yamaji; Namiki Mitani; Masahiro Yano; Yoshiaki Nagamura; Jian Feng Ma

Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.


Plant Physiology | 2009

The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species

Ren Ying Li; Yukiko Ago; Wen Ju Liu; Namiki Mitani; Jörg Feldmann; Steve P. McGrath; Jian Feng Ma

Pentavalent methylated arsenic (As) species such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] are used as herbicides or pesticides, and can also be synthesized by soil microorganisms or algae through As methylation. The mechanism of MMA(V) and DMA(V) uptake remains unknown. Recent studies have shown that arsenite is taken up by rice (Oryza sativa) roots through two silicon transporters, Lsi1 (the aquaporin NIP2;1) and Lsi2 (an efflux carrier). Here we investigated whether these two transporters also mediate the uptake of MMA(V) and DMA(V). MMA(V) was partly reduced to trivalent MMA(III) in rice roots, but only MMA(V) was translocated to shoots. DMA(V) was stable in plants. The rice lsi1 mutant lost about 80% and 50% of the uptake capacity for MMA(V) and DMA(V), respectively, compared with the wild-type rice, whereas Lsi2 mutation had little effect. The short-term uptake kinetics of MMA(V) can be described by a Michaelis-Menten plus linear model, with the wild type having 3.5-fold higher Vmax than the lsi1 mutant. The uptake kinetics of DMA(V) were linear with the slope being 2.8-fold higher in the wild type than the lsi1 mutant. Heterologous expression of Lsi1 in Xenopus laevis oocytes significantly increased the uptake of MMA(V) but not DMA(V), possibly because of a very limited uptake of the latter. Uptake of MMA(V) and DMA(V) by wild-type rice was increased as the pH of the medium decreased, consistent with an increasing proportion of the undissociated species. The results demonstrate that Lsi1 mediates the uptake of undissociated methylated As in rice roots.


Plant Physiology | 2009

OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice.

Kengo Yokosho; Naoki Yamaji; Daisei Ueno; Namiki Mitani; Jian Feng Ma

Multidrug and toxic compound extrusion (MATE) transporters represent a large family in plants, but their functions are poorly understood. Here, we report the function of a rice (Oryza sativa) MATE gene (Os03g0216700, OsFRDL1), the closest homolog of barley (Hordeum vulgare) HvAACT1 (aluminum [Al]-activated citrate transporter 1), in terms of metal stress (iron [Fe] deficiency and Al toxicity). This gene was mainly expressed in the roots and the expression level was not affected by either Fe deficiency or Al toxicity. Knockout of this gene resulted in leaf chlorosis, lower leaf Fe concentration, higher accumulation of zinc and manganese concentration in the leaves, and precipitation of Fe in the roots stele. The concentration of citrate and ferric iron in the xylem sap was lower in the knockout line compared to the wild-type rice. Heterologous expression of OsFRDL1 in Xenopus oocytes showed transport activity for citrate. Immunostaining showed that OsFRDL1 was localized at the pericycle cells of the roots. On the other hand, there was no difference in the Al-induced secretion of citrate from the roots between the knockout line and the wild-type rice. Taken together, our results indicate that OsFRDL1 is a citrate transporter localized at the pericycle cells, which is necessary for efficient translocation of Fe to the shoot as a Fe-citrate complex.


Plant Physiology | 2004

Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice

Jian Feng Ma; Namiki Mitani; Sakiko Nagao; Saeko Konishi; Kazunori Tamai; Takashi Iwashita; Masahiro Yano

Rice (Oryza sativa L. cv Oochikara) is a typical silicon-accumulating plant, but the mechanism responsible for the high silicon uptake by the roots is poorly understood. We characterized the silicon uptake system in rice roots by using a low-silicon rice mutant (lsi1) and wild-type rice. A kinetic study showed that the concentration of silicon in the root symplastic solution increased with increasing silicon concentrations in the external solution but saturated at a higher concentration in both lines. There were no differences in the silicon concentration of the symplastic solution between the wild-type rice and the mutant. The form of soluble silicon in the root, xylem, and leaf identified by 29Si-NMR was also the same in the two lines. However, the concentration of silicon in the xylem sap was much higher in the wild type than in the mutant. These results indicate that at least two transporters are involved in silicon transport from the external solution to the xylem and that the low-silicon rice mutant is defective in loading silicon into xylem rather than silicon uptake from external solution to cortical cells. To map the responsible gene, we performed a bulked segregant analysis by using both microsatellite and expressed sequence tag-based PCR markers. As a result, the gene was mapped to chromosome 2, flanked by microsatellite marker RM5303 and expressed sequence tag-based PCR marker E60168.


Journal of Biological Chemistry | 2009

NIP1;1, an Aquaporin Homolog, Determines the Arsenite Sensitivity of Arabidopsis thaliana *□

Takehiro Kamiya; Mayuki Tanaka; Namiki Mitani; Jian Feng Ma; Masayoshi Maeshima; Toru Fujiwara

Arsenite [As(III)] is highly toxic to organisms, including plants. Very recently, transporters in rice responsible for As(III) transport have been described (Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., and Zhao, F. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 9931–9935), but little is known about As(III) tolerance. In this study, three independent As(III)-tolerant mutants were isolated from ethyl methanesulfonate-mutagenized M2 seeds of Arabidopsis thaliana. All three mutants carried independent mutations in Nodulin 26-like intrinsic protein 1;1 (NIP1;1), a homolog of an aquaporin. Two independent transgenic lines carrying T-DNA in NIP1;1 were highly tolerant to As(III), establishing that NIP1;1 is the causal gene of As(III) tolerance. Because an aquaglyceroporin is able to transport As(III), we measured As(III) transport activity. When expressed in Xenopus oocytes, NIP1;1 was capable of transporting As(III). As content in the mutant plants was 30% lower than in wild-type plants. Promoter β-glucuronidase and real-time PCR analysis showed that NIP1;1 is highly expressed in roots, and GFP-NIP1;1 is localized to the plasma membrane. These data show that NIP1;1 is involved in As(III) uptake into roots and that disruption of NIP1;1 function confers As(III) tolerance to plants. NIP1;2 and NIP5;1, closely related homologs of NIP1;1, were also permeable to As(III). Although the disruption of these genes reduced the As content in plants, As(III) tolerance was not observed in nip1;2 and nip5;1 mutants. This indicates that As(III) tolerance cannot be simply explained by decreased As contents in plants.


Plant and Cell Physiology | 2009

Identification of Maize Silicon Influx Transporters

Namiki Mitani; Naoki Yamaji; Jian Feng Ma

Maize (Zea mays L.) shows a high accumulation of silicon (Si), but transporters involved in the uptake and distribution have not been identified. In the present study, we isolated two genes (ZmLsi1 and ZmLsi6), which are homologous to rice influx Si transporter OsLsi1. Heterologous expression in Xenopus laevis oocytes showed that both ZmLsi1 and ZmLsi6 are permeable to silicic acid. ZmLsi1 was mainly expressed in the roots. By contrast, ZmLsi6 was expressed more in the leaf sheaths and blades. Different from OsLsi1, the expression level of both ZmLsi1 and ZmLsi6 was unaffected by Si supply. Immunostaining showed that ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. In the shoots, ZmLsi6 was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and leaf blades. ZmLsi6 in the leaf sheaths and blades also exhibited polar localization on the side facing towards the vessel. Taken together, it can be concluded that ZmLsi1 is an influx transporter of Si, which is responsible for the transport of Si from the external solution to the root cells and that ZmLsi6 mainly functions as a Si transporter for xylem unloading.


The Plant Cell | 2009

Identification and Characterization of Maize and Barley Lsi2-Like Silicon Efflux Transporters Reveals a Distinct Silicon Uptake System from That in Rice

Namiki Mitani; Yukako Chiba; Naoki Yamaji; Jian Feng Ma

Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.

Collaboration


Dive into the Namiki Mitani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Iwashita

Osaka University of Pharmaceutical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge