Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Namita Sinha is active.

Publication


Featured researches published by Namita Sinha.


PLOS ONE | 2015

Effect of mild-to-moderate smoking on viral load, cytokines, oxidative stress, and cytochrome P450 enzymes in HIV-infected individuals

Anusha Ande; Carole P. McArthur; Leo Ayuk; Charles Awasom; Paul Achu; Annette Njinda; Namita Sinha; P.S.S. Rao; Marisela Agudelo; Anantha Ram Nookala; Stephen D. Simon; Anil Kumar; Santosh Kumar

Mild-to-moderate tobacco smoking is highly prevalent in HIV-infected individuals, and is known to exacerbate HIV pathogenesis. The objective of this study was to determine the specific effects of mild-to-moderate smoking on viral load, cytokine production, and oxidative stress and cytochrome P450 (CYP) pathways in HIV-infected individuals who have not yet received antiretroviral therapy (ART). Thirty-two human subjects were recruited and assigned to four different cohorts as follows: a) HIV negative non-smokers, b) HIV positive non-smokers, c) HIV negative mild-to-moderate smokers, and d) HIV positive mild-to-moderate smokers. Patients were recruited in Cameroon, Africa using strict selection criteria to exclude patients not yet eligible for ART and not receiving conventional or traditional medications. Those with active tuberculosis, hepatitis B or with a history of substance abuse were also excluded. Our results showed an increase in the viral load in the plasma of HIV positive patients who were mild-to-moderate smokers compared to individuals who did not smoke. Furthermore, although we did not observe significant changes in the levels of most pro-inflammatory cytokines, the cytokine IL-8 and MCP-1 showed a significant decrease in the plasma of HIV-infected patients and smokers compared with HIV negative non-smokers. Importantly, HIV-infected individuals and smokers showed a significant increase in oxidative stress compared with HIV negative non-smoker subjects in both plasma and monocytes. To examine the possible pathways involved in increased oxidative stress and viral load, we determined the mRNA levels of several antioxidant and cytochrome P450 enzymes in monocytes. The results showed that the levels of most antioxidants are unaltered, suggesting their inability to counter oxidative stress. While CYP2A6 was induced in smokers, CYP3A4 was induced in HIV and HIV positive smokers compared with HIV negative non-smokers. Overall, the findings suggest a possible association of oxidative stress and perhaps CYP pathway with smoking-mediated increased viral load in HIV positive individuals.


PLOS ONE | 2016

Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells.

P.S.S. Rao; Anusha Ande; Namita Sinha; Anil Kumar; Santosh Kumar

While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC-treated cells of myeloid lineage. This study warrants a closer examination of the role of CYP1B1 in smoking-mediated enhanced HIV replication.


Aids Research and Therapy | 2015

Enhanced oxidative stress by alcohol use in HIV+ patients: possible involvement of cytochrome P450 2E1 and antioxidant enzymes

Anusha Ande; Namita Sinha; P.S.S. Rao; Carole P. McArthur; Leo Ayuk; Paul Achu; Annette Njinda; Anil Kumar; Santosh Kumar

BackgroundAlcohol consumption is prevalent amongst HIV positive population. Importantly, chronic alcohol use is reported to exacerbate HIV pathogenesis. Although alcohol is known to increase oxidative stress, especially in the liver, there is no clinical evidence that alcohol increases oxidative stress in HIV positive patients. The mechanism by which alcohol increases oxidative stress in HIV positive patients is also unknown.MethodsTo examine the effects of alcohol use on oxidative stress we recruited HIV+ patients who reported mild-to-moderate alcohol use. Strict inclusion and exclusion criteria were applied to reduce the effect of other therapeutic drugs metabolized via the hepatic system as well as the effect of co-morbidities such as active tuberculosis on the interaction between alcohol and HIV infection, respectively. Blood samples were collected from HIV-negative alcohol-users and HIV positive alcohol-users followed by collection of plasma and isolation and fractionation of monocytes from peripheral blood. We then determined oxidative DNA damage, glutathione level, alcohol level, transcriptional level of cytochrome P450 2E1 (CYP2E1) and several antioxidant enzymes, and plasma level of cytokines.ResultsCompared to HIV-negative alcohol users, HIV-positive alcohol users demonstrated an increase in oxidative DNA damage in both plasma and CD14+ monocytes, as well as, a relative increase in oxidized/reduced glutathione (GSSG/GSH) in plasma samples. These results suggest an increase in oxidative stress in HIV-positive alcohol users compared with HIV-negative alcohol users. We also examined whether alcohol metabolism, perhaps by CYP2E1, and antioxidant enzymes are involved in alcohol-mediated increased oxidative stress in HIV-positive patients. The results showed a lower plasma alcohol level, which was associated with an increased level of CYP2E1 mRNA in monocytes, in HIV-positive alcohol users compared with HIV-negative alcohol users. Furthermore, the transcription of major antioxidants enzymes (catalase, SOD1, SOD2, GSTK1), and their transcription factor, Nrf2, were reduced in monocytes obtained from HIV positive alcohol users compared to the HIV-negative alcohol user group. However, no significant change in levels of five major cytokines/chemokines were observed between the two groups.ConclusionsThe data suggests that alcohol increases oxidative stress in HIV+ patients, perhaps through CYP2E1- and antioxidant enzymes-mediated pathways. The enhanced oxidative stress is accompanied by a failure of cellular antioxidant mechanisms to maintain redox homeostasis. Overall, the enhanced oxidative stress in monocytes may exacerbate HIV pathogenesis in HIV positive alcohol users.


PLOS ONE | 2016

Effect of Polyaryl Hydrocarbons on Cytotoxicity in Monocytic Cells: Potential Role of Cytochromes P450 and Oxidative Stress Pathways.

Sabina Ranjit; Narasimha M. Midde; Namita Sinha; Benjamin J. Patters; Mohammad A. Rahman; Theodore J. Cory; P.S.S. Rao; Santosh Kumar

Background Benzo(a)pyrene (BaP), naphthalene (NPh), phenanthrene (Phe), benzo(a)antharacene (BeA), and benzo(b)fluoranthene (BeF) are known carcinogenic polyaryl hydrocarbons (PAHs) present in cigarette smoke. This study was designed to examine the relative effect of these constituents on the cytotoxicity of monocytic cells and the possible mechanism of PAH-mediated cytotoxicity. Methods We examined the acute (6–24 hours) and chronic (7 days) effects of these PAHs on the expression of cytochromes P450 (CYPs), oxidative stress, and cytotoxicity. The treated cells were examined for mRNA and protein levels of CYPs (1A1 and 3A4) and antioxidants enzymes (AOEs) superoxide dismutase-1 (SOD1) and catalase. Further, we assessed the levels of reactive oxygen species (ROS), caspase-3 cleavage activity, and cell viability. We performed these experiments in U937 and/or primary monocytic cells. Results Of the five PAHs tested, after chronic treatment only BaP (100 nM) showed a significant increase in the expression of CYP1A1, AOEs (SOD1 and catalase), ROS generation, caspase-3 cleavage activity, and cytotoxicity. However, acute treatment with BaP showed only an increase in the mRNA expression of CYP1A1. Conclusions These results suggest that of the five PAHs tested, BaP is the major contributor to the toxic effect of PAHs in monocytic cells, which is likely to occur through CYP and oxidative stress pathways.


PLOS ONE | 2017

Alterations in cellular pharmacokinetics and pharmacodynamics of elvitegravir in response to Ethanol exposure in HIV-1 infected monocytic (U1) cells

Narasimha M. Midde; Namita Sinha; Pradeep B. Lukka; Bernd Meibohm; Santosh Kumar

Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence and general health in HIV positive individuals. Previously, we demonstrated ethanol-mediated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the current study, we investigated ethanol influence on the pharmacokinetic and pharmacodynamic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with 5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours. EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein expressions were measured. Presence of ethanol demonstrated a significant effect on the total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the HIV replication despite the presence of drugs and this elevated HIV replication was reduced in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG concentration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Furthermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment groups which included ethanol compared to those with no treatment. In summary, these findings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism and transporter protein expression. This study provides valuable evidence for further investigation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies.


Scientific Reports | 2017

Monocyte-derived exosomes upon exposure to cigarette smoke condensate alter their characteristics and show protective effect against cytotoxicity and HIV-1 replication

Sanjana Haque; Namita Sinha; Sabina Ranjit; Narasimha M. Midde; Fatah Kashanchi; Santosh Kumar

Smoking is known to exacerbate HIV-1 pathogenesis, especially in monocytes, through the oxidative stress pathway. Exosomes are known to alter HIV-1 pathogenesis through inter-cellular communication. However, the role of exosomes in smoking-mediated HIV-1 pathogenesis is unknown. In this study, we investigated the effect of cigarette smoke condensate (CSC) on the characteristics of monocyte-derived exosomes and their influence on HIV-1 replication. Initially, we demonstrated that CSC reduced total protein and antioxidant capacity in exosomes derived from HIV-1-infected and uninfected macrophages. The exosomes from CSC-treated uninfected cells showed a protective effect against cytotoxicity and viral replication in HIV-1-infected macrophages. However, exosomes derived from HIV-1-infected cells lost their protective capacity. The results suggest that the exosomal defense is likely to be more effective during the early phase of HIV-1 infection and diminishes at the latter phase. Furthermore, we showed CSC-mediated upregulation of catalase in exosomes from uninfected cells, with a decrease in the levels of catalase and PRDX6 in exosomes derived from HIV-1-infected cells. These results suggest a potential role of antioxidant enzymes, which are differentially packaged into CSC-exposed HIV-1-infected and uninfected cell-derived exosomes, on HIV-1 replication of recipient cells. Overall, our study suggests a novel role of exosomes in tobacco-mediated HIV-1 pathogenesis.


Scientific Reports | 2018

Benzo(a)pyrene in Cigarette Smoke Enhances HIV-1 Replication through NF-κB Activation via CYP-Mediated Oxidative Stress Pathway

Sabina Ranjit; Namita Sinha; Sunitha Kodidela; Santosh Kumar

Smoking aggravates HIV-1 pathogenesis and leads to decreased responses to antiretroviral therapy. In this study, we aim to find a molecular mechanism that would explain smoking-induced HIV-1 replication. Benzo(a)pyrene (BaP), a major carcinogen in cigarette, requires metabolic activation through cytochrome P450s (CYPs) to exert its toxic effects. We hypothesized that CYP-mediated BaP metabolism generates reactive oxygen species (ROS), and the resultant oxidative stress aggravates HIV-1 replication. As expected, we observed ~3 to 4-fold increase in HIV-1 replication in U1 cells and human primary macrophages after chronic BaP exposure. We also observed ~30-fold increase in the expression of CYP1A1 at mRNA level, ~2.5-fold increase in its enzymatic activity as well as elevated ROS and cytotoxicity in U1 cells. The knock-down of the CYP1A1 gene using siRNA and treatment with selective CYP inhibitors and antioxidants significantly reduced HIV-1 replication. Further, we observed a nuclear translocation of NF-κB subunits (p50 and p65) after chronic BaP exposure, which was reduced by treatment with siRNA and antioxidants/CYP inhibitors. Suppression of NF-κB pathway using specific NF-κB inhibitors also significantly reduced HIV-1 replication. Altogether, our results suggest that BaP enhances HIV-1 replication in macrophages by a CYP-mediated oxidative stress pathway followed by the NF-κB pathway.


PLOS ONE | 2018

Cytokine profiling of exosomes derived from the plasma of HIV-infected alcohol drinkers and cigarette smokers

Sunitha Kodidela; Sabina Ranjit; Namita Sinha; Carole P. McArthur; Anil Kumar; Santosh Kumar

Cytokines and chemokines circulate in plasma and may be transferred to distant sites, via exosomes. HIV infection is associated with dysregulation of cytokines and chemokines, which subsequently contribute to the pathogenesis of HIV. Alcohol and tobacco exposure, which are prevalent in HIV-infected individuals, may induce changes in the expression of cytokines and chemokines. Therefore, our aim in this study was to quantify plasma exosomal cytokines and chemokines that we expect to exacerbate toxicity or disease progression in HIV-positive drug abusers. We measured the levels of cytokines and chemokines in the plasma and plasma exosomes of 39 patients comprising six groups: HIV-negative and HIV-positive non drug abusers, HIV-negative and HIV-positive alcohol users, and HIV-negative and HIV positive tobacco smokers. We measured six cytokines (TNF-α, IL-1β, IL-8, IL-6, IL-1ra, IL-10) and two chemokines (MCP-1 and RANTES). All were present in exosomes of healthy subjects, but their levels varied between different study groups. HIV-positive alcohol drinkers had higher levels of plasma IL-8 compared to those of HIV-positive non-drinkers. The IL-1ra level was significantly higher in exosomes of non-HIV-infected alcohol drinkers compared to those of HIV-positive alcohol drinkers. Interestingly, the IL-10 level was higher in exosomes compared with their respective plasma levels in all study groups except HIV-positive non-alcohol drinkers. IL-10 was completely packaged in exosomes of HIV-positive smokers. HIV-positive smokers had significantly higher levels of plasma IL-8 compared with HIV-positive non-smokers and significantly higher exosomal IL-6 levels compared with HIV-negative subjects. HIV-positive smokers had significantly increased plasma levels of IL-1ra compared to HIV-positive non-smokers. The MCP-1 levels in the plasma of HIV-positive smokers was significantly higher than in either HIV-positive non-drug abusers or HIV-negative smokers. Overall, the findings suggest that plasma cytokines and chemokines are packaged in exosomes at varying degrees in different study groups. Exosomal cytokines and chemokines are likely to have a significant biological role at distant sites including cells in the brain.


Cancer Epidemiology, Biomarkers & Prevention | 2017

Abstract IA30: Comorbidity factors associated with human papillomavirus infectivity: Implications in cervical cancer health disparity

Vivek K. Kashyap; Sheema Khan; Mohammad Sikander; Diane M. Maher; Samtosh K. Kumar; Namita Sinha; Murali M. Yallapu; Nadeem Zafar; Meena Jaggi; Subhash C. Chauhan

Objective: High-risk strains of human papillomavirus (HPV), HPV E6/E7 cause cervical cancer (CxCa). Certain underserved populations in the United States, such as American Indian and African American women disproportionately suffer from CxCa compared to their Caucasian counter parts. However, precise etiology and comorbidity factors associated with CxCa health disparity are not fully uncovered. Understanding of these factors at molecular level will entail developing novel strategies to reduce this health disparity. In this study, we have investigated the molecular interplay existing between various comorbidity factors, namely, smoking, alcohol and HIV co-infection on the HPV infectivity which are primarily known for the progression of CxCa. Method: In order to define a molecular association of smoking, alcohol and HIV co-infection with CxCa, Caski and SiHa (HPV infected cervical cancer cells) cells were treated with a smoking carcinogens Benzo[a]Pyrene (BaP) or alcohol (EthOH) or both for different time periods. Effects of these treatment was analyzed on cell proliferation, clonogenicity, cell migration, cell cycle and the expression of HPV E6/E7 was determined by qRT-PCR, immunoblotting and confocal microscopy. The effect of HIV co-infection on the expression of HPV E6/E7 was also investigated by incubating CxCa cells with conditioned medium derived from HIV infected U937 monocytic cells (U1). Additionally, we examined effect of these cofactors on the expression enzymes associated with cellular oxidative stress using immunoblotting and confocal microscopy analyses. Results: Our results show that the exposure of BaP or EthOH or their combination enhances the expression of HPV E6/E7 oncogenes. Additionally, cells treated with BaP and EthOH alone or in combination show higher oncogenic phenotypes as evident by increased cell proliferation, clonogenicity and cell migration and invasion. These cofactors in presence of HIV co-infection also augment the expression of HPVE6/E7 oncogenes. Exposure of these cofactors alter cellular oxidative stress via modulation of the expression of PRDX6 enzyme. Interestingly, curcumin and its nanoparticle formulation (Nano-Cur) effectively inhibit BaP/EthOH induced expression of E6/E7 oncogenes, tumorigenic characteristics of CxCa cells and induce apoptosis. Conclusions: The study suggests a molecular link between smoking, alcohol and HIV infection with HPV infectivity and their potential association with CxCa health disparity. These events however, can be effectively attenuated by curcumin/nano-curcumin treatment, implying its role in CxCa prevention/treatment. This provides hope for developing a feasible approach to effectively reduce CxCa health disparity among underserved populations. Citation Format: Vivek K. Kashyap, Sheema Khan, Mohammad Sikander, Diane M. Maher, Samtosh K. Kumar, Namita Sinha, Murali M. Yallapu, Nadeem Zafar, Meena Jaggi, Subhash C. Chauhan. Comorbidity factors associated with human papillomavirus infectivity: Implications in cervical cancer health disparity. [abstract]. In: Proceedings of the Ninth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2016 Sep 25-28; Fort Lauderdale, FL. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2017;26(2 Suppl):Abstract nr IA30.


Neuropathology of Drug Addictions and Substance Misuse#R##N#Volume 1: Foundations of Understanding, Tobacco, Alcohol, Cannabinoids and Opioids | 2016

Cytochrome P450 and Oxidative Stress as Possible Pathways for Alcohol- and Tobacco-Mediated HIV Pathogenesis and NeuroAIDS

Santosh Kumar; P.S.S. Rao; Namita Sinha; Narasimha M. Midde

Abstract Substance abuse, especially alcohol drinking and tobacco smoking, is highly prevalent in the HIV-infected population. HIV medication using antiretroviral therapy (ART) has led to an increase in the life span of HIV patients. The increased life span of HIV-positive patients, concurrent with increased use of alcohol and tobacco, has resulted in the development of neuroAIDS. In the past few years there has been increasing interest in investigating the interactions among alcohol, tobacco, HIV, and ART to achieve better treatment strategies for HIV-infected alcohol drinkers and tobacco smokers. Among other hypotheses, the involvement of cytochrome P450 (CYP) and oxidative stress pathways leading to exacerbated neuroAIDS has received much attention. This chapter covers the impact of alcohol and tobacco on neuroAIDS and advancements in the understanding of the involvement of CYP and oxidative stress pathways in alcohol- and tobacco-mediated neuroAIDS.

Collaboration


Dive into the Namita Sinha's collaboration.

Top Co-Authors

Avatar

Santosh Kumar

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Narasimha M. Midde

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

P.S.S. Rao

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Sabina Ranjit

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Anil Kumar

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Anusha Ande

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Carole P. McArthur

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Murali M. Yallapu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Diane M. Maher

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge