Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Ding is active.

Publication


Featured researches published by Nan Ding.


Cell Death and Disease | 2013

Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition

Jufang Wang; Jinpeng He; Fengtao Su; Nan Ding; Wentao Hu; B Yao; Wei Wang; Guangming Zhou

Cellular responses to DNA damage induced by intrinsic and extrinsic genotoxic stresses are highly regulated by complex signaling pathways, such as activation of the phosphoinositide-3-kinase-like protein kinase family and their downstream genes. Disruption of these signaling pathways leads to genome instability and cell death, and thus may provide potential novel strategies for cancer therapy. Here, we find that the expression of a human microRNA (miRNA), hsa-miR-185, is downregulated in response to ionizing radiation. Elevation of miR-185 sensitizes renal cell carcinoma cells to X-rays both in vitro and in vivo. Bioinformatic analysis shows that the ATM- and Rad3-related (ATR) kinase, a master conductor of cellular responses to DNA damage and DNA replication stresses, is a target of miR-185. This prediction was validated by luciferase reporter and mutation assays. We also demonstrated that miR-185 negatively regulates ATR expression at post-transcriptional level. miR-185 enhances radiation-induced apoptosis and inhibition of proliferation by repressing ATR pathway. In conclusion, our findings indicate a previously unreported regulatory mechanism for ATR expression mediated by miR-185 and shed light on the potential application of miRNAs both as direct cancer therapeutics and as tools to sensitize tumor cells to radiotherapy.


RNA Biology | 2015

Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect

Shuai Xu; Jufang Wang; Nan Ding; Wentao Hu; X. D. Zhang; Bing Wang; Junrui Hua; Wenjun Wei; Qiyun Zhu

Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.


RNA Biology | 2014

MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode.

Wentao Hu; Shuai Xu; Bin Yao; Mei Hong; Xin Wu; Hailong Pei; Lei Chang; Nan Ding; Xiaofei Gao; Caiyong Ye; Jufang Wang; Tom K. Hei; Guangming Zhou

The mechanisms of radiation-induced bystander effects (RIBE) have been investigated intensively over the past two decades. Although quite a few reports demonstrated that cytokines such as TGF-β1 are induced within the directly irradiated cells and play critical roles in mediating the bystander effects, little is known about the signaling pathways that occur in bystander cells. The crucial question as to why RIBE signals cannot be infinitely transmitted, therefore, remains unclear. In the present study, we showed that miR-663, a radiosensitive microRNA, participates in the regulation of biological effects in both directly irradiated and bystander cells via its targeting of TGF-β1. MiR-663 was downregulated, while TGFB1 was upregulated in directly irradiated cells. The regulation profile of miR-663 and TGFB1, on the other hand, was reversed in bystander cells, in which an elevated miR-663 expression was exhibited and led to downregulation of TGF-β1. Further studies revealed that miR-663 interacts with TGFB1 directly and that through its binding to the core regulation sequence, miR-663 suppresses the expression of TGFB1. Based on the results, we propose that miR-663 inhibits the propagation of RIBE in a feedback mode, in which the induction of TGF-β1 by reduced miR-663 in directly irradiated cells leads to increased level of miR-663 in bystander cells. The upregulation of miR-663 in turn suppresses the expression of TGF-β1 and limits further transmission of the bystander signals.


RNA Biology | 2012

miR-3928 activates ATR pathway by targeting Dicer

Lei Chang; Wentao Hu; Caiyong Ye; Bin Yao; Lei Song; Xin Wu; Nan Ding; Jufang Wang; Guangming Zhou

Alterations in microRNA (miRNA) expression have been observed in cells subjected to exogenous stresses, implying that miRNAs play an important role in cellular stress response; however, the underlying mechanism is still largely unknown. In the present study, we found that miR-3928 was implicated in cellular response to ionizing radiation. After exposed to X-rays, miR-3928 expression increased in 1.5 h and then decreased, meanwhile Dicer, a key component in the miRNA processing machinery, increased gradually. An oscillation was observed in the expression of both mature miR-3928 and Dicer mRNA from 2 h to 3.5 h in irradiated cells. Then, we verified that miR-3928 directly bound to the 3-untranslated region of Dicer mRNA. Consequently, Dicer expression was suppressed and the maturation of other miRNAs including miR-185, miR-300, and miR-663, was inhibited. Overexpression of miR-3928 induced DNA damage, activated ATR, and phosphorylated Chk1 accompanied by G1 arrest. Taken together, these findings replenished ATR/Chk1 pathway by revealing a novel miRNA regulatory network in response to exogenous stress, in which miR-3928 plays an important role in regulating the expression of Dicer.


Journal of Radiation Research | 2011

Detection of Novel Human MiRNAs Responding to X-ray Irradiation

Nan Ding; Xin Wu; Jinpeng He; Lei Chang; Wentao Hu; Wenjian Li; Jufang Wang; Tieshan Wang; Guangming Zhou

Up to now, more than 1048 human miRNAs have been identified. However, the recognition of new human miRNAs is becoming more and more difficult. Based on the hypothesis that the expression of some miRNAs can be induced by ionizing radiation, total RNAs of HeLa cells were isolated 1 h after exposure to 2 Gy of X-rays, and total small RNAs were enriched and sequenced by PAGE and Solexa technology, respectively. As a result, 421 kinds of known miRNAs and 337 kinds of unknown sequences were identified, among which 10 novel miRNAs were characterized by bioinformatic approach and verified by qRT-PCR. Finally, putative targets of these miRNAs were predicted by TargetScan software and compared with known proteins down-regulated by radiation. It was confirmed that some of the targets of these novel miRNAs were radiation-related proteins. These results imply that these 10 novel miRNAs are radiation-related miRNAs. This study reveals a new way to find novel miRNAs.


Radiation Oncology | 2014

Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells.

Xin Wu; Nan Ding; Wentao Hu; Jinpeng He; Shuai Xu; Hailong Pei; Junrui Hua; Guangming Zhou; Jufang Wang

BackgroundB cell translocation gene 1 (BTG1) has long been recognized as a tumor suppressor gene. Recent reports demonstrated that BTG1 plays an important role in progression of cell cycle and is involved in cellular response to stressors. However, the microRNAs mediated regulatory mechanism of BTG1 expression has not been reported so far. MicroRNAs can effectively influence tumor radiosensitivity by preventing cell cycle progression, resulting in enhancement of the cytotoxicity of radiotherapy efficacy. This study aimed to demonstrating the effects of microRNAs on the BTG1 expression and cellular radiosensitivity.MethodsThe human renal carcinoma 786-O cells were treated with 5xa0Gy of X-rays. Expressions of BTG1 gene and miR-454-3p, which was predicted to target BTG1 by software algorithm, were analyzed by quantitative polymerase chain reaction. Protein expressions were assessed by Western blot. Luciferase assays were used to quantify the interaction between BTG1 3′-untranslated region (3′-UTR) and miR-454-3p. The radiosensitivity was quantified by the assay of cell viability, colony formation and caspase-3 activity.ResultsThe expression of the BTG1 gene in 786-O cells was significantly elevated after treatments with X-ray irradiation, DMSO, or serum starvation. The up-regulation of BTG1 after irradiation reduced cellular radiosensitivity as demonstrated by the enhanced cell viability and colony formation, as well as the repressed caspase-3 activity. In comparison, knock down of BTG1 by siRNA led to significantly enhanced cellular radiosensitivity. It was found that miR-454-3p can regulate the expression of BTG1 through a direct interaction with the 3′-UTR of BTG1 mRNA. Decreasing of its expression level correlates well with BTG1 up-regulation during X-ray irradiation. Particularly, we observed that over-expression of miR-454-3p by transfection inhibited the BTG1 expression and enhanced the radiosensitivity. In addition, cell cycle analysis showed that over-expression of miR-454-3p shifted the cell cycle arrest from G2/M phase to S phase.ConclusionsOur results indicate that BTG1 is a direct target of miR-454-3p. Down-regulation of BTG1 by miR-454-3p renders tumor cells sensitive to radiation. These results may shed light on the potential application in tumor radiotherapy.


Oncology Reports | 2014

Modulation of microRNAs by ionizing radiation in human gastric cancer

Jinpeng He; Junrui Hua; Nan Ding; Shuai Xu; Rui Sun; Guangming Zhou; Xiaodong Xie; Jufang Wang

Gastric cancer is one of the most common cancers in China. Although surgery is the primary therapeutic method, radiotherapy has become an integral part, particularly in the early and intermediate stages of gastric cancer. microRNAs (miRNAs) are involved in the regulation of diverse cellular processes in response to intrinsic and extrinsic stress. A change in miRNA expression profile has been identified in various types of tumor cells in response to radiation; however, there is no relevant information concerning gastric cancer. In the present study, we investigated the miRNA profiles of two clinical gastric cancer samples exposed to X‑rays using miRNA microarray. We found that 16 miRNAs were downregulated and 2 miRNAs were upregulated significantly in both irradiated samples when compared with the unirradiated samples. Decreases in the levels of miR‑300 and miR‑642 expression were confirmed by qRT‑PCR in more clinical samples and in cultured cell lines. We predicted the targets of the two miRNAs with TargetScan and classified all the candidate targets with Gene Ontology, which indicated that both miR‑300 and miR‑642 potentially regulate cellular radiation response by modulating apoptosis, cell cycle regulation and DNA damage and repair pathway-related genes. Cell cycle assay and immunofluorescence assay demonstrated that miR‑300 regulates radiation‑induced G2 cell cycle arrest and DNA damage repair. In conclusion, our findings indicate that ionizing radiation modulates the miRNA expression profile, and the changes in several specific miRNAs such as miR‑300 have the potential to be used in the treatment, diagnosis and prognosis of gastric cancer.


Journal of Radiation Research | 2013

Quantitative proteomic analysis for radiation-induced cell cycle suspension in 92-1 melanoma cell line

Fengling Wang; Zhitong Bing; Yanan Zhang; Bin Ao; Sheng Zhang; Caiyong Ye; Jinpeng He; Nan Ding; Wenling Ye; Jie Xiong; Jintu Sun; Yoshiya Furusawa; Guangming Zhou; Lei Yang

Melanoma is a malignant tumor with high invasive and metastatic properties. Though radiation is the major therapy for melanoma, its radio-resistance has been shown to severely influence the clinical outcome. So it is imperative to enhance the sensitivity of uveal melanoma cells to radiotherapy. Previously, we found that the cell cycle of 92-1 uveal melanoma cells was suspended and remained unchanged for up to 5 days after exposure to 10 Gy of X-rays, which might be relevant to the high radio-sensitivity of 92-1 cells. To further investigate the cell cycle suspension-associated proteins, we employed two analyses with stable isotope labeling with amino acids in cell culture technology and two-dimensional liquid chromatography tandem mass spectrometry. Cells were incubated for 15 h or 48 h after irradiation with 10 Gy of X-rays. We identified a total of 737 proteins at 15 h (Group A) and 530 proteins at 48 h post-irradiation (Group B). The gene ontology biological pathway was used to obtain a systems level view of proteome changes in 92-1cells under cell cycle suspension. We further selected the significantly changed proteins for investigation of their potential contribution to cell cycle suspension, growth arrest and cell senescence. These proteins are involved in the cell cycle, stress response, glycolysis and the tricarboxylic acid cycle, etc. Our study expected to reveal potential marker proteins associated with cell suspension induced by irradiation, which might contribute to understanding the mechanism beyond the cell cycle suspension.


Cell Cycle | 2017

RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation.

Hailong Pei; Jian Zhang; Jing Nie; Nan Ding; Wentao Hu; Junrui Hua; Ryoichi Hirayama; Yoshiya Furusawa; Cuihua Liu; Bingyan Li; Tom K. Hei; Guangming Zhou

ABSTRACT Our recent study showed that quiescent G0 cells are more resistant to ionizing radiation than G1 cells; however, the underlying mechanism for this increased radioresistance is unknown. Based on the relatively lower DNA damage induced in G0 cells, we hypothesize that these cells are exposed to less oxidative stress during exposure. As a catalytic subunit of NADPH oxidase, Ras-related C3 botulinum toxin substrate 2 (RAC2) may be involved in the cellular response to ionizing radiation. Here, we show that RAC2 was expressed at low levels in G0 cells but increased substantially in G1 cells. Relative to G1 cells, the total antioxidant capacity in G0 phase cells increased upon exposure to X-ray radiation, whereas the intracellular concentration of ROS and malondialdehyde increased only slightly. The induction of DNA single- and double-stranded breaks in G1 cells by X-ray radiation was inhibited by knockdown of RAC2. P38 MAPK interaction with RAC2 resulted in a decrease of functional RAC2. Increased phosphorylation of P38 MAPK in G0 cells also increased cellular radioresistance; however, excessive production of ROS caused P38 MAPK dephosphorylation. P38 MAPK, phosphorylated P38 MAPK, and RAC2 regulated in mutual feedback and negative feedback regulatory pathways, resulting in the radioresistance of G0 cells.


Journal of Radiation Research | 2014

Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures

Wentao Hu; Hailong Pei; He Li; Nan Ding; Jinpeng He; Jufang Wang; Yoshiya Furusawa; Ryoichi Hirayama; Yoshitaka Matsumoto; Cuihua Liu; Yinghui Li; Tetsuya Kawata; Guangming Zhou

High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design.

Collaboration


Dive into the Nan Ding's collaboration.

Top Co-Authors

Avatar

Jufang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangming Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinpeng He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wentao Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junrui Hua

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hailong Pei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Caiyong Ye

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

He Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Chang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge