Nan E. Hatch
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nan E. Hatch.
Journal of Biological Chemistry | 2009
Chunxi Ge; Guozhi Xiao; Di Jiang; Qian Yang; Nan E. Hatch; Hernan Roca; Renny T. Franceschi
The Runx2 transcription factor is required for commitment of mesenchymal cells to bone lineages and is a major regulator of osteoblast-specific gene expression. Runx2 is subject to a number of post-transcriptional controls including selective proteolysis and phosphorylation. We previously reported that Runx2 is phosphorylated and activated by the ERK/MAPK pathway (Xiao, G., Jiang, D., Thomas, P., Benson, M. D., Guan, K., Karsenty, G., and Franceschi, R. T. (2000) J. Biol. Chem. 275, 4453–4459). In this study, we used a combination of in vitro and in vivo phosphorylation analysis, mass spectroscopy, and functional assays to identify two sites at Ser301 and Ser319 within the proline/serine/threonine domain of Runx2 that are required for this regulation. These sites are phosphorylated by activated ERK1 in vitro and in cell culture. In addition to confirming ERK-dependent phosphorylation at Ser319, mass spectroscopy identified two other ERK-phosphorylated sites at Ser43 and Ser510. Furthermore, introduction of S301A,S319A mutations rendered Runx2 resistant to MAPK-dependent activation and reduced its ability to stimulate osteoblast-specific gene expression and differentiation after transfection into Runx2-null calvarial cells and mesenchymal cells. In contrast, S301E,S319E Runx2 mutants had enhanced transcriptional activity that was minimally dependent on MAPK signaling, consistent with the addition of a negative charge mimicking serine phosphorylation. These results emphasize the important role played by Runx2 phosphorylation in the control of osteoblast gene expression and provide a mechanism to explain how physiological signals acting on bone through the ERK/MAPK pathway can stimulate osteoblast-specific gene expression.
Journal of Biological Chemistry | 2006
Nan E. Hatch; Mark P. Hudson; Marianne L. Seto; Michael L. Cunningham; Mark Bothwell
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves aberrant development of the craniofacial skeleton. Craniosynostosis syndrome-linked FGFR mutations have been shown to be gain of function in terms of receptor activation and have been presumed to result in increased levels of FGF/FGFR signaling. Unfortunately, studies attempting to link expression of mutant FGFRs with changes in cellular phenotype have yielded conflicting results. In an effort to better understand the biochemical consequences of these mutations on receptor function, here we have investigated the effect of the FGFR2C278F mutation of Crouzon craniosynostosis syndrome on receptor trafficking, ubiquitination, degradation, and signaling. We find that FGFR2C278F exhibits diminished glycosylation, increased degradation, and limited cellular sublocalization in the osteoblastic cell line, MC3T3E1(C4). Additionally, we show that trafficking and autoactivation of wild type FGFR2 is glycosylation-dependent. Both FGFR2C278F and unglycosylated wild type FGFR2 signal through phospholipase Cγ in a ligand-independent manner as well as exhibit dramatically increased binding to the adaptor protein, Frs2. These findings suggest that autoactive FGFR2 can signal from intracellular compartments. Based upon our results, we propose that the functional signaling of craniosynostosis mutant, autoactive receptors is limited in some cell types by protective cellular responses, such as increased trafficking to lysosomes and proteasomes for degradation.
Journal of Biological Chemistry | 2011
Hwa Kyung Nam; Jin Liu; Yan Li; Andrew Kragor; Nan E. Hatch
Background: ENPP1 is expressed in precursor cells, but the role of ENPP1 in these cells is unknown. Results: High cellular ENPP1 expression promotes osteoblast (bone cell) differentiation, whereas low ENPP1 expression prevents osteoblast differentiation. Pyrophosphate and phosphate do not mediate this effect. Conclusion: ENPP1 promotes osteoblast differentiation. Significance: ENPP1 promotes osteoblast differentiation in precursor cells, which is a critical component of anabolic bone activity. ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase-1) is an established regulator of tissue mineralization. Previous studies demonstrated that ENPP1 is expressed in differentiated osteoblasts and that ENPP1 influences matrix mineralization by increasing extracellular levels of inorganic pyrophosphate. ENPP1 is also expressed in osteoblastic precursor cells when stimulated with FGF2, but the role of ENPP1 in preosteoblastic and other precursor cells is unknown. Here we investigate the function of ENPP1 in preosteoblasts. We find that ENPP1 expression is critical for osteoblastic differentiation and that this effect is not mediated by changes in extracellular concentration levels of phosphate or pyrophosphate or ENPP1 catalytic activity. MC3T3E1(C4) preosteoblastic cells, in which ENPP1 expression was suppressed by ENPP1-specific shRNA, and calvarial cells isolated from Enpp1 knock-out mice show defective osteoblastic differentiation upon stimulation with ascorbate, as indicated by a lack of cellular morphological change, a lack of osteoblast marker gene expression, and an inability to mineralize matrix. Additionally, MC3T3E1(C4) cells, in which wild type or catalytic inactive ENPP1 expression was increased, exhibited an increased tendency to differentiate, as evidenced by increased osteoblast marker gene expression and increased mineralization. Notably, treatment of cells with inorganic phosphate or pyrophosphate inhibited, as opposed to enhanced, expression of multiple genes that are expressed in association with osteoblast differentiation, matrix deposition, and mineralization. Our results indicate that ENPP1 plays multiple and distinct roles in the development of mineralized tissues and that the influence of ENPP1 on osteoblast differentiation and gene expression may include a mechanism that is independent of its catalytic activity.
Bone | 2014
Jin Liu; Hwa Kyung Nam; Cassie Campbell; Kellen Cristina da Silva Gasque; José Luis Millán; Nan E. Hatch
UNLABELLED Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. OBJECTIVES Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl(-/-) mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. METHODS Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. RESULTS Alpl(-/-) mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl(-/-) mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. CONCLUSIONS These findings demonstrate that Alpl(-/-) mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base.
Calcified Tissue International | 2013
Jin Liu; Hwa Kyung Nam; Estee Wang; Nan E. Hatch
Crouzon syndrome is a debilitating congenital disorder involving abnormal craniofacial skeletal development caused by mutations in fibroblast growth factor receptor-2 (FGFR2). Phenotypic expression in humans exhibits an autosomal dominant pattern that commonly involves premature fusion of the coronal suture (craniosynostosis) and severe midface hypoplasia. To further investigate the biologic mechanisms by which the Crouzon syndrome–associated FGFR2C342Y mutation leads to abnormal craniofacial skeletal development, we created congenic BALB/c FGFR2C342Y/+ mice. Here, we show that BALB/c FGFR2C342Y/+ mice have a consistent craniofacial phenotype including partial fusion of the coronal and lambdoid sutures, intersphenoidal synchondrosis, and multiple facial bones, with minimal fusion of other craniofacial sutures. This phenotype is similar to the classic and less severe form of Crouzon syndrome that involves significant midface hypoplasia with limited craniosynostosis. Linear and morphometric analyses demonstrate that FGFR2C342Y/+ mice on the BALB/c genetic background differ significantly in form and shape from their wild-type littermates and that in this genetic background the FGFR2C342Y mutation preferentially affects some craniofacial bones and sutures over others. Analysis of cranial bone cells indicates that the FGFR2C342Y mutation promotes aberrant osteoblast differentiation and increased apoptosis that is more severe in frontal than parietal bone cells. Additionally, FGFR2C342Y/+ frontal, but not parietal, bones exhibit significantly diminished bone volume and density compared to wild-type mice. These results confirm that FGFR2-associated craniosynostosis occurs in association with diminished cranial bone tissue and may provide a potential biologic explanation for the clinical finding of phenotype consistency that exists between many Crouzon syndrome patients.
Bone | 2015
Kellen Cristina da Silva Gasque; Brian L. Foster; Pia Kuss; Manisha C. Yadav; Jin Liu; Tina Kiffer-Moreira; Andrea van Elsas; Nan E. Hatch; Martha J. Somerman; José Luis Millán
Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl(-/-)) mice, a model for life-threatening HPP. Here, we show that the administration of a soluble, intestinal-like chimeric alkaline phosphatase (ChimAP) improves the manifestations of HPP in Alpl(-/-) mice. Mice received daily subcutaneous injections of ChimAP at doses of 1, 8 or 16 mg/kg, from birth for up to 53 days. Lifespan and body weight of Alpl(-/-) mice were normalized, and vitamin B6-associated seizures were absent with 16 mg/kg/day of ChimAP. Radiographs, μCT and histological analyses documented improved mineralization in cortical and trabecular bone and secondary ossification centers in long bones of ChimAP16-treated mice. There was no evidence of craniosynostosis in the ChimAP16-treated mice and we did not detect ectopic calcification by radiography and histology in the aortas, stomachs, kidneys or lungs in any of the treatment groups. Molar tooth development and function improved with the highest ChimAP dose, including enamel, dentin, and tooth morphology. Cementum remained deficient and alveolar bone mineralization was reduced compared to controls, though ChimAP-treated Alpl(-/-) mice featured periodontal attachment and retained teeth. This study provides the first evidence for the pharmacological efficacy of ChimAP for use in the treatment of skeletal and dental manifestations of HPP.
Journal of Bone and Mineral Research | 2009
Nan E. Hatch; Yan Li; Renny T. Franceschi
Pyrophosphate is an established inhibitor of hydroxyapatite deposition and crystal growth, yet when hydrolyzed into phosphate, it becomes a substrate for hydroxyapatite deposition. Pyrophosphate‐generating enzyme (PC‐1), Ank, and tissue nonspecific alkaline phosphatase (Tnap) are three factors that regulate extracellular pyrophosphate levels through its generation, transport, and hydrolysis. We previously showed that fibroblast growth factor 2 (FGF2) induces PC‐1 and Ank while inhibiting Tnap expression and mineralization in MC3T3E1(C4) calvarial pre‐osteoblast cells. In this study, we showed similar FGF2 regulation of these genes in primary pre‐osteoblast cultures. In contrast to Ank and Tnap that are regulated by FGF2 in multiple cell types, we found regulation of PC‐1 to be selective to pre‐osteoblastic cells and to require the osteoblast‐related transcription factor, Runx2. Specifically, FGF2 was unable to induce PC‐1 expression in Runx2‐negative nonbone cells or in calvarial cells from Runx2‐deficient mice. Transfection of these cells with a Runx2 expression vector restored FGF2 responsiveness. FGF2 was also shown to stimulate recruitment of Runx2 to the endogenous PC‐1 promoter in MC3T3E1(C4) cells, as measured by chromatin immunoprecipitation. Taken together, our results establish that FGF2 is a specific inducer of PC‐1 in pre‐osteoblast cells and that FGF2 induces PC‐1 expression through a mechanism involving Runx2.
Journal of Dental Research | 2015
Brian L. Foster; C.R. Sheen; Nan E. Hatch; J. Liu; Esther Cory; Sonoko Narisawa; Tina Kiffer-Moreira; Robert L. Sah; Michael P. Whyte; Martha J. Somerman; José Luis Millán
Mutations in ALPL result in hypophosphatasia (HPP), a disease causing defective skeletal mineralization. ALPL encodes tissue nonspecific alkaline phosphatase (ALP), an enzyme that promotes mineralization by reducing inorganic pyrophosphate, a mineralization inhibitor. In addition to skeletal defects, HPP causes dental defects, and a mild clinical form of HPP, odontohypophosphatasia, features only a dental phenotype. The Alpl knockout (Alpl-/-) mouse phenocopies severe infantile HPP, including profound skeletal and dental defects. However, the severity of disease in Alpl-/- mice prevents analysis at advanced ages, including studies to target rescue of dental tissues. We aimed to generate a knock-in mouse model of odontohypophosphatasia with a primarily dental phenotype, based on a mutation (c.346G>A) identified in a human kindred with autosomal dominant odontohypophosphatasia. Biochemical, skeletal, and dental analyses were performed on the resulting Alpl+/A116T mice to validate this model. Alpl+/A116T mice featured 50% reduction in plasma ALP activity compared with wild-type controls. No differences in litter size, survival, or body weight were observed in Alpl+/A116T versus wild-type mice. The postcranial skeleton of Alpl+/A116T mice was normal by radiography, with no differences in femur length, cortical/trabecular structure or mineral density, or mechanical properties. Parietal bone trabecular compartment was mildly altered. Alpl+/A116T mice featured alterations in the alveolar bone, including radiolucencies and resorptive lesions, osteoid accumulation on the alveolar bone crest, and significant differences in several bone properties measured by micro–computed tomography. Nonsignificant changes in acellular cementum did not appear to affect periodontal attachment or function, although circulating ALP activity was correlated significantly with incisor cementum thickness. The Alpl+/A116T mouse is the first model of odontohypophosphatasia, providing insights on dentoalveolar development and function under reduced ALP, bringing attention to direct effects of HPP on alveolar bone, and offering a new model for testing potential dental-targeted therapies in future studies.
Orthodontics & Craniofacial Research | 2015
D. A. Schneider; S. M. Smith; Cassie Campbell; T. Hayami; Sunil Kapila; Nan E. Hatch
OBJECTIVES To determine minimal dose levels required for local inhibition of orthodontic relapse by recombinant OPG protein (OPG-Fc), while also determining effects of injected OPG-Fc on alveolar bone and long bone. SETTING AND SAMPLE POPULATION The Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Eighteen male Sprague Dawley rats. MATERIALS & METHODS Maxillary molars were moved with nickel-titanium springs and then allowed to relapse in Sprague Dawley rats. Upon appliance removal, animals were injected with a single dose of 1.0 mg/kg OPG-Fc, 0.1 mg/kg OPG-Fc, or phosphate-buffered saline (vehicle) just distal to the molar teeth. Tooth movement measurements were made from stone casts, which were scanned and digitally measured. Alveolar tissues were examined by histology. Micro-computed tomography was used to quantify changes in alveolar and femur bone. RESULTS Local injection of OPG-Fc inhibited molar but not incisor relapse, when compared to vehicle-injected animals. No significant differences in alveolar or femur bone were seen between the three treatment groups after 24 days of relapse. CONCLUSIONS Our results demonstrate that a single local injection of OPG-Fc effectively inhibits orthodontic relapse, with minimal systemic bone metabolic effects. Our results also show that a single injection of OPG-Fc will influence tooth movement only in teeth close to the injection site. These findings indicate that OPG-Fc has potential as a safe and effective pharmacological means to locally control osteoclasts, for uses such as maintaining anchorage during orthodontic tooth movement and preventing orthodontic relapse in humans.
Bone | 2015
Jin Liu; Cassie Campbell; Hwa Kyung Nam; Alexandre Caron; Manisha C. Yadav; José Luis Millán; Nan E. Hatch
Hypophosphatasia (HPP) is an inborn-error-of-metabolism disorder characterized by deficient bone and tooth mineralization due to loss-of function mutations in the gene (Alpl) encoding tissue-nonspecific alkaline phosphatase (TNAP). Alpl(-/-) mice exhibit many characteristics seen in infantile HPP including long bone and tooth defects, vitamin B6 responsive seizures and craniosynostosis. Previous reports demonstrated that a mineral-targeted form of TNAP rescues long bone, vertebral and tooth mineralization defects in Alpl(-/-) mice. Here we report that enzyme replacement with mineral-targeted TNAP (asfotase-alfa) also prevents craniosynostosis (the premature fusion of cranial bones) and additional craniofacial skeletal abnormalities in Alpl(-/-) mice. Craniosynostosis, cranial bone volume and density, and craniofacial shape abnormalities were assessed by microscopy, histology, digital caliper measurements and micro CT. We found that craniofacial shape defects, cranial bone mineralization and craniosynostosis were corrected in Alpl(-/-) mice injected daily subcutaneously starting at birth with recombinant enzyme. Analysis of Alpl(-/-) calvarial cells indicates that TNAP deficiency leads to aberrant osteoblastic gene expression and diminished proliferation. Some but not all of these cellular abnormalities were rescued by treatment with inorganic phosphate. These results confirm an essential role for TNAP in craniofacial skeletal development and demonstrate the efficacy of early postnatal mineral-targeted enzyme replacement for preventing craniofacial abnormalities including craniosynostosis in murine infantile HPP.