Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Hao is active.

Publication


Featured researches published by Nan Hao.


Biochemical Pharmacology | 2013

The emerging roles of AhR in physiology and immunity.

Nan Hao; Murray L. Whitelaw

The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcriptional regulator involved in adaptive xenobiotic response, however, emerging evidence supports physiological functions of AhR in normal cell development and immune response. The role of AhR in immunomodulation is multi-dimensional. On the one hand, activation of AhR by TCDD and other ligands leads to profound immunosuppression, potentially via skewed Th1/Th2 cell balance toward Th1 dominance, and boosted Treg cell differentiation. On the other hand, activation of AhR can also induce Th17 cell polarization and increase the severity of autoimmune disease. In addition to T lymphocytes, the AhR also appears to play a vital role in B cell maturation, and regulates the activity of macrophages, dendritic cells and neutrophils following lipopolysaccharide challenge or influenza virus infection. In these scenarios, activation of AhR is associated with decreased host response and reduced survival. Furthermore, gene knock out studies suggest that AhR is indispensable for the postnatal maintenance of intestinal intraepithelial lymphocytes and skin-resident dendritic epidermal gamma delta T cells, providing a potential link between AhR and gut immunity and wound healing. It is well accepted that the magnitude and the type of immune response is dependent on the local cytokine milieu and the AhR appears to be one of the key factors involved in the fine turning of this cytokine balance.


Nucleic Acids Research | 2011

Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR

Nan Hao; Murray L. Whitelaw; Keith E. Shearwin; Ian B. Dodd; Anne Chapman-Smith

The basic helix–loop–helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using a new bacterial two-hybrid system that selects for loss of protein interactions, we have identified 22 amino acids in the N-terminal PAS domain of Arnt that are involved in heterodimerization with aryl hydrocarbon receptor (AhR). Of these, Arnt E163 and Arnt S190 were selective for the AhR/Arnt interaction, since mutations at these positions had little effect on Arnt dimerization with other bHLH.PAS partners, while substitution of Arnt D217 affected the interaction with both AhR and hypoxia inducible factor-1α but not with single minded 1 and 2 or neuronal PAS4. Arnt uses the same face of the N-terminal PAS domain for homo- and heterodimerization and mutational analysis of AhR demonstrated that the equivalent region is used by AhR when dimerizing with Arnt. These interfaces differ from the PAS β-scaffold surfaces used for dimerization between the C-terminal PAS domains of hypoxia inducible factor-2α and Arnt, commonly used for PAS domain interactions.


Molecular Pharmacology | 2012

Xenobiotics and Loss of Cell Adhesion Drive Distinct Transcriptional Outcomes by Aryl Hydrocarbon Receptor Signaling

Nan Hao; Kian Leong Lee; Sebastian G.B. Furness; Cecilia Bosdotter; Lorenz Poellinger; Murray L. Whitelaw

The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.


Molecular Pharmacology | 2010

Amino Acid Substitutions in the Aryl Hydrocarbon Receptor Ligand Binding Domain Reveal YH439 As an Atypical AhR Activator

Fiona Whelan; Nan Hao; Sebastian G.B. Furness; Murray L. Whitelaw; Anne Chapman-Smith

The aryl hydrocarbon receptor (AhR) is traditionally defined as a transcription factor activated by exogenous polyaromatic and halogenated aromatic hydrocarbon (PAH/HAH) ligands. Active AhR induces genes involved in xenobiotic metabolism, including cytochrome P4501A1, which function to metabolize activating ligands. However, recent studies implicate AhR in biological events that are apparently unrelated to the xenobiotic response, implying that endogenous activation mechanisms exist. Three AhR genes in zebrafish (Danio rerio) encode proteins that demonstrate differential activation in response to PAH/HAHs, with the nonresponsive drAhR1a having some sequence divergence from the PAH/HAH-responsive AhRs in the ligand binding domain (LBD). We used these differences to guide the mutagenesis of mouse AhR (mAhR), aiming to generate variants that functionally discriminate between activation mechanisms. We found substitution of histidine 285 in the LBD with tyrosine gave a receptor that could be activated by isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439), a potential AhR ligand chemically distinct from classic PAH/HAH-type ligands, but prevented activation by both exogenous PAH/HAH ligands and the endogenous activation mimics of suspension culture and application of shear-stressed serum. The differential response of H285Y mAhR to YH439 suggests that this activator has a novel mode of interaction that tolerates tyrosine at position 285 in the LBD and is distinct from the binding mode of the well characterized PAH/HAH ligands. In support of this, the PAH-type antagonist 3′,4′-dimethoxyflavone blocked mAhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin but not YH439. Furthermore, the strict correlation between response to exogenous PAH/HAH ligands and mimics of endogenous activation suggests that a PAH-type ligand may underpin endogenous mechanisms of activation.


Oncogene | 2016

The aryl hydrocarbon receptor links integrin signaling to the TGF-β pathway

M Silginer; I Burghardt; Dorothee Gramatzki; L Bunse; H Leske; Elisabeth J. Rushing; Nan Hao; Michael Platten; Michael Weller; Patrick Roth

Glioblastoma is the most common and aggressive form of intrinsic brain tumor. Transforming growth factor (TGF)-β represents a central mediator of the malignant phenotype of these tumors by promoting invasiveness and angiogenesis, maintaining tumor cell stemness and inducing profound immunosuppression. Integrins, which are highly expressed in glioma cells, interact with the TGF-β pathway. Furthermore, a link has been described between activity of the transcription factor aryl hydrocarbon receptor (AhR) and TGF-β expression. Here we demonstrate that integrin inhibition, using αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological inhibition by the cyclic RGD peptide EMD 121974 (cilengitide) or the non-peptidic molecule GLPG0187, inhibits AhR activity. These effects are independent of cell detachment or cell density. While AhR mRNA expression was not affected by integrin inhibition, AhR total and nuclear protein levels were reduced, suggesting that integrin inhibition-mediated regulation of AhR may occur at a post-transcriptional level. AhR-null astrocytes, AhR-null hepatocytes or glioblastoma cells with a transiently silenced AhR gene showed reduced sensitivity to integrin inhibition-mediated alterations in TGF-β signaling, indicating that AhR mediates integrin control of the TGF-β pathway. Accordingly, there was a significant correlation of αv integrin levels with nuclear AhR and pSmad2 levels as determined by immunohistochemistry in human glioblastoma in vivo. In summary, this study identifies a signaling network comprising integrins, AhR and TGF-β and validates integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block AhR- and TGF-β-controlled features of malignancy in human glioblastoma.


Nucleic Acids Research | 2014

Road rules for traffic on DNA—systematic analysis of transcriptional roadblocking in vivo

Nan Hao; Sandeep Krishna; Alexandra Ahlgren-Berg; Erin E. Cutts; Keith E. Shearwin; Ian B. Dodd

Genomic DNA is bound by many proteins that could potentially impede elongation of RNA polymerase (RNAP), but the factors determining the magnitude of transcriptional roadblocking in vivo are poorly understood. Through systematic experiments and modeling, we analyse how roadblocking by the lac repressor (LacI) in Escherichia coli cells is controlled by promoter firing rate, the concentration and affinity of the roadblocker protein, the transcription-coupled repair protein Mfd, and promoter–roadblock spacing. Increased readthrough of the roadblock at higher RNAP fluxes requires active dislodgement of LacI by multiple RNAPs. However, this RNAP cooperation effect occurs only for strong promoters because roadblock-paused RNAP is quickly terminated by Mfd. The results are most consistent with a single RNAP also sometimes dislodging LacI, though we cannot exclude the possibility that a single RNAP reads through by waiting for spontaneous LacI dissociation. Reducing the occupancy of the roadblock site by increasing the LacI off-rate (weakening the operator) increased dislodgement strongly, giving a stronger effect on readthrough than decreasing the LacI on-rate (decreasing LacI concentration). Thus, protein binding kinetics can be tuned to maintain site occupation while reducing detrimental roadblocking.


Nucleic Acids Research | 2013

Reciprocal regulation of the basic helix–loop–helix/Per–Arnt–Sim partner proteins, Arnt and Arnt2, during neuronal differentiation

Nan Hao; Veronica L. D. Bhakti; Daniel J. Peet; Murray L. Whitelaw

Basic helix–loop–helix/Per–Arnt–Sim (bHLH/PAS) transcription factors function broadly in development, homeostasis and stress response. Active bHLH/PAS heterodimers consist of a ubiquitous signal-regulated subunit (e.g., hypoxia-inducible factors, HIF-1α/2α/3α; the aryl hydrocarbon receptor, AhR) or tissue-restricted subunit (e.g., NPAS1/3/4, Single Minded 1/2), paired with a general partner protein, aryl hydrocarbon receptor nuclear translocator (Arnt or Arnt2). We have investigated regulation of the neuron-enriched Arnt paralogue, Arnt2. We find high Arnt/Arnt2 ratios in P19 embryonic carcinoma cells and ES cells are dramatically reversed to high Arnt2/Arnt on neuronal differentiation. mRNA half-lives of Arnt and Arnt2 remain similar in both parent and neuronal differentiated cells. The GC-rich Arnt2 promoter, while heavily methylated in Arnt only expressing hepatoma cells, is methylation free in P19 and ES cells, where it is bivalent with respect to active H3K4me3 and repressive H3K27me3 histone marks. Typical of a ‘transcription poised’ developmental gene, H3K27me3 repressive marks are removed from Arnt2 during neuronal differentiation. Our data are consistent with a switch to predominant Arnt2 expression in neurons to allow specific functions of neuronal bHLH/PAS factors and/or to avoid neuronal bHLH/PAS factors from interfering with AhR/Arnt signalling.


Nature Communications | 2017

Programmable DNA looping using engineered bivalent dCas9 complexes

Nan Hao; Keith E. Shearwin; Ian B. Dodd

DNA looping is a ubiquitous and critical feature of gene regulation. Although DNA looping can be efficiently detected, tools to readily manipulate DNA looping are limited. Here we develop CRISPR-based DNA looping reagents for creation of programmable DNA loops. Cleavage-defective Cas9 proteins of different specificity are linked by heterodimerization or translational fusion to create bivalent complexes able to link two separate DNA regions. After model-directed optimization, the reagents are validated using a quantitative DNA looping assay in E. coli. Looping efficiency is ~15% for a 4.7 kb loop, but is significantly improved by loop multiplexing with additional guides. Bivalent dCas9 complexes are also used to activate endogenous norVW genes by rewiring chromosomal DNA to bring distal enhancer elements to the gene promoters. Such reagents should allow manipulation of DNA looping in a variety of cell types, aiding understanding of endogenous loops and enabling creation of new regulatory connections.DNA loops are a ubiquitious feature of gene regulation across the kingdoms of life. Here the authors design a Cas9-based dimerization system for inducing DNA loops in E. coli, allowing activation and rewiring of gene expression.


Nucleic Acids Research | 2016

The role of repressor kinetics in relief of transcriptional interference between convergent promoters

Nan Hao; Adam C. Palmer; Alexandra Ahlgren-Berg; Keith E. Shearwin; Ian B. Dodd

Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR–PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI.


Transcription | 2017

Directing traffic on DNA—How transcription factors relieve or induce transcriptional interference

Nan Hao; Adam C. Palmer; Ian B. Dodd; Keith E. Shearwin

ABSTRACT Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

Collaboration


Dive into the Nan Hao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian B. Dodd

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge