Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan K. Li is active.

Publication


Featured researches published by Nan K. Li.


Biomacromolecules | 2014

Molecular Description of the LCST Behavior of an Elastin-Like Polypeptide

Nan K. Li; Felipe García Quiroz; Carol K. Hall; Ashutosh Chilkoti; Yaroslava G. Yingling

Elastin-like polypeptides (ELPs) with the repeat sequence of VPGVG are widely used as a model system for investigation of lower critical solution temperature (LCST) transition behavior. In this paper, the effect of temperature on the structure, dynamics and association of (VPGVG)18 in aqueous solution is investigated using atomistic molecular dynamics simulations. Our simulations show that as the temperature increases the ELP backbones undergo gradual conformational changes, which are attributed to the formation of more ordered secondary structures such as β-strands. In addition, increasing temperature changes the hydrophobicity of the ELP by exposure of hydrophobic valine-side chains to the solvent and hiding of proline residues. Based on our simulations, we conclude that the transition behavior of (VPGVG)18 can be attributed to a combination of thermal disruption of the water network that surrounds the polypeptide, reduction of solvent accessible surface area of the polypeptide, and increase in its hydrophobicity. Simulations of the association of two (VPGVG)18 molecules demonstrated that the observed gradual changes in the structural properties of the single polypeptide chain are enough to cause the aggregation of polypeptides above the LCST. These results lead us to propose that the LCST phase behavior of poly(VPGVG) is a collective phenomenon that originates from the correlated gradual changes in single polypeptide structure and the abrupt change in properties of hydration water around the peptide and is a result of a competition between peptide-peptide and peptide-water interactions. This is a computational study of an important intrinsically disordered peptide system that provides an atomic-level description of structural features and interactions that are relevant in the LCST phase behavior.


ACS Applied Materials & Interfaces | 2016

Emulsion-Based RIR-MAPLE Deposition of Conjugated Polymers: Primary Solvent Effect and Its Implications on Organic Solar Cell Performance.

Wangyao Ge; Nan K. Li; Ryan D. McCormick; Eli Lichtenberg; Yaroslava G. Yingling; Adrienne D. Stiff-Roberts

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.


Molecular Simulation | 2014

Progress in molecular modelling of DNA materials

Nan K. Li; Ho Shin Kim; Jessica A. Nash; Mina Lim; Yaroslava G. Yingling

The unique molecular recognition properties of DNA molecule, which store genetic information in cells, are responsible for the rise of DNA nanotechnology. In this article, we review the recent advances in atomistic and coarse-grained force fields along with simulations of DNA-based materials, as applied to DNA–nanoparticle assemblies for controlled material morphology, DNA–surface interactions for biosensor development and DNA origami. Evidently, currently available atomistic and coarse-grained representations of DNA are now at the stage of successfully reproducing and explaining experimentally observed phenomena. However, there is a clear need for the development of atomistic force fields which are robust at long timescales and in the improvement of the coarse-grained models.


Biomacromolecules | 2016

LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG)n.

Binwu Zhao; Nan K. Li; Yaroslava G. Yingling; Carol K. Hall

The physical origin of the lower critical solution temperature (LCST) behavior of a variety of fluids, including elastin-like polypeptides (ELPs), has been studied for the past few decades. As is the case for polymer solutions, LCST behavior of ELPs is invariably reported for large systems of molecules and is considered evidence for collective behavior. In contrast, we find evidence for properties changes associated with LCST behavior in a single molecule by performing long atomic-level molecular dynamics simulation on the ELP sequences (Val-Pro-Gly-Val-Gly)n for four different length peptides over a wide range of temperatures. We observe a sharp transition in the number of hydrogen bonds between peptide and water and in the number of water molecules within the first hydration shell as temperature rises; this is used to locate the transition temperature. The dependence of the transition temperatures of ELPs on their lengths agrees well with experiments in that both have the same power law exponents. Our simulations reveal that the tendency for pentamers (VPGVG) in ELPs of all lengths to lose H-bonds with water or to gain H-bonds with themselves as temperature rises is independent of the length of the chain in which they are embedded. Thus, the transition temperature of ELPs in pure water is determined by two factors: the hydrogen bonding tendency of the pentamers and the number of pentamers per ELP. Moreover, the hydrogen bonding tendency of pentamers depends only on their sequences, not on the ELP chain length.


ACS Nano | 2015

Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics.

Jessica A. Nash; Abhishek Singh; Nan K. Li; Yaroslava G. Yingling

The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remains to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large-scale, all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove.


Macromolecular Rapid Communications | 2017

Salt Responsive Morphologies of ssDNA-Based Triblock Polyelectrolytes in Semi-Dilute Regime: Effect of Volume Fractions and Polyelectrolyte Length

Nan K. Li; Huihui Kuang; William H. Fuss; Stefan Zauscher; Efrosini Kokkoli; Yaroslava G. Yingling

A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self-assembled from BAB single-strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self-assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm-like or hamburger-shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self-assembly of ssDNA triblocks.


Biomacromolecules | 2018

Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides

Nan K. Li; Stefan Roberts; Felipe Garcia Quiroz; Ashutosh Chilkoti; Yaroslava G. Yingling

Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( Tt). However, poly(VPGVG) resolubilizes upon cooling below its Tt, whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the Tt. The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above Tt, where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).


Biomacromolecules | 2017

Functional Modification of Silica through Enhanced Adsorption of Elastin-Like Polypeptide Block Copolymers

Linying Li; Nan K. Li; Qing Tu; Owen Im; Chia-Kuei Mo; Wei Han; William H. Fuss; Nick J. Carroll; Ashutosh Chilkoti; Yaroslava G. Yingling; Stefan Zauscher; Gabriel P. Lopez

A powerful tool for controlling interfacial properties and molecular architecture relies on the tailored adsorption of stimuli-responsive block copolymers onto surfaces. Here, we use computational and experimental approaches to investigate the adsorption behavior of thermally responsive polypeptide block copolymers (elastin-like polypeptides, ELPs) onto silica surfaces, and to explore the effects of surface affinity and micellization on the adsorption kinetics and the resultant polypeptide layers. We demonstrate that genetic incorporation of a silica-binding peptide (silaffin R5) results in enhanced adsorption of these block copolymers onto silica surfaces as measured by quartz crystal microbalance and ellipsometry. We find that the silaffin peptide can also direct micelle adsorption, leading to close-packed micellar arrangements that are distinct from the sparse, patchy arrangements observed for ELP micelles lacking a silaffin tag, as evidenced by atomic force microscopy measurements. These experimental findings are consistent with results of dissipative particle dynamics simulations. Wettability measurements suggest that surface immobilization hampers the temperature-dependent conformational change of ELP micelles, while adsorbed ELP unimers (i.e., unmicellized block copolymers) retain their thermally responsive property at interfaces. These observations provide guidance on the use of ELP block copolymers as building blocks for fabricating smart surfaces and interfaces with programmable architecture and functionality.


Soft Matter | 2015

Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles

Nan K. Li; William H. Fuss; Lei Tang; Renpeng Gu; Ashutosh Chilkoti; Stefan Zauscher; Yaroslava G. Yingling


Macromolecular Theory and Simulations | 2015

An Implicit Solvent Ionic Strength (ISIS) Method to Model Polyelectrolyte Systems with Dissipative Particle Dynamics

Nan K. Li; William H. Fuss; Yaroslava G. Yingling

Collaboration


Dive into the Nan K. Li's collaboration.

Top Co-Authors

Avatar

Yaroslava G. Yingling

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

William H. Fuss

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica A. Nash

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Huihui Kuang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Abhishek Singh

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Binwu Zhao

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge