Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Ye Lei is active.

Publication


Featured researches published by Nan Ye Lei.


Gastroenterology | 2013

Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay

Fengchao Wang; David Scoville; Xi C. He; Maxime M. Mahe; Andrew C. Box; John M. Perry; Nicholas R. Smith; Nan Ye Lei; Paige S. Davies; Megan K. Fuller; Jeffrey S. Haug; Melainia McClain; Adam D. Gracz; Sheng Ding; Matthias Stelzner; James C.Y. Dunn; Scott T. Magness; Melissa H. Wong; Martin G. Martin; Michael A. Helmrath; Linheng Li

BACKGROUND & AIMS Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5-green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS CD44(+)CD24(lo)CD166(+) cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell-associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44(+)CD24(lo)CD166(+) GRP78(lo/-) putative stem cells from mouse small intestine included Lgr5-GFP(hi) and Lgr5-GFP(med/lo) cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44(+)CD24(lo)CD166(+), GRP78(lo/-), and c-Kit(-) facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44(+)CD24(-/lo)CD166(+) also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.


PLOS ONE | 2011

Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium.

Nicholas Lahar; Nan Ye Lei; Jiafang Wang; Ziyad Jabaji; Stephaine C. Tung; Vaidehi S. Joshi; Michael I. Lewis; Matthias Stelzner; Martin G. Martin; James C.Y. Dunn

The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs) and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.


PLOS ONE | 2014

Intestinal Subepithelial Myofibroblasts Support the Growth of Intestinal Epithelial Stem Cells

Nan Ye Lei; Ziyad Jabaji; Jiafang Wang; Vaidehi S. Joshi; Garrett J. Brinkley; Hassan Osman khalil; Fengchao Wang; Artur Jaroszewicz; Matteo Pellegrini; Linheng Li; Michael Lewis; Matthias Stelzner; James C.Y. Dunn; Martin G. Martin

Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.


PLOS ONE | 2014

Type I Collagen as an Extracellular Matrix for the In Vitro Growth of Human Small Intestinal Epithelium

Ziyad Jabaji; Garrett J. Brinkley; Hassan A. Khalil; Connie M. Sears; Nan Ye Lei; Michael Lewis; Matthias Stelzner; Martin G. Martin; James C.Y. Dunn

Background We previously reported in vitro maintenance and proliferation of human small intestinal epithelium using Matrigel, a proprietary basement membrane product. There are concerns over the applicability of Matrigel-based methods for future human therapies. We investigated type I collagen as an alternative for the culture of human intestinal epithelial cells. Methods Human small intestine was procured from fresh surgical pathology specimens. Small intestinal crypts were isolated using EDTA chelation. Intestinal subepithelial myofibroblasts were isolated from a pediatric sample and expanded in vitro. After suspension in Matrigel or type I collagen gel, crypts were co-cultured above a confluent layer of myofibroblasts. Crypts were also grown in monoculture with exposure to myofibroblast conditioned media; these were subsequently sub-cultured in vitro and expanded with a 1∶2 split ratio. Cultures were assessed with light microscopy, RT-PCR, histology, and immunohistochemistry. Results Collagen supported viable human epithelium in vitro for at least one month in primary culture. Sub-cultured epithelium expanded through 12 passages over 60 days. Histologic sections revealed polarized columnar cells, with apical brush borders and basolaterally located nuclei. Collagen-based cultures gave rise to monolayer epithelial sheets at the gel-liquid interface, which were not observed with Matrigel. Immunohistochemical staining identified markers of differentiated intestinal epithelium and myofibroblasts. RT-PCR demonstrated expression of α-smooth muscle actin and vimentin in myofibroblasts and E-Cadherin, CDX2, villin 1, intestinal alkaline phosphatase, chromogranin A, lysozyme, and Lgr5 in epithelial cells. These markers were maintained through several passages. Conclusion Type I collagen gel supports long-term in vitro maintenance and expansion of fully elaborated human intestinal epithelium. Collagen-based methods yield familiar enteroid structures as well as a new pattern of sheet-like growth, and they eliminate the need for Matrigel for in vitro human intestinal epithelial growth. Future research is required to further develop this cell culture system for tissue engineering applications.


Journal of Surgical Research | 2013

Macroporosity enhances vascularization of electrospun scaffolds

Vaidehi S. Joshi; Nan Ye Lei; Christopher M. Walthers; Benjamin M. Wu; James C.Y. Dunn

BACKGROUND One of the greatest challenges in scaffold-based tissue engineering remains poor and inefficient penetration of cells into scaffolds to generate thick vascularized and cellular tissues. Electrospinning has emerged as a preferred method for producing scaffolds with high surface area-to-volume ratios and resemblance to extracellular matrix. However, cellular infiltration and vascular ingrowth are insufficient because of lack of macropore interconnectivity in electrospun scaffolds with high-fiber density. In this study, we report a novel two-step electrospinning and laser cutting fabrication method to enhance the macroporosity of electrospun scaffolds. MATERIALS AND METHODS Polycaprolactone dissolved in hexafluoroisopropanol was electrospun at 25 kV to create uniform 100-120 μm sheets of polycaprolactone fiber mats (1- to 5-μm fiber diameter) with an array of pores created using VERSA LASER CUTTER 2.3. Three groups of fiber mats with three distinct pore diameters (300, 160, and 80 μm, all with 15% pore area) were fabricated and compared with a control group without laser cut pores. After laser cutting, all mats were collagen coated and manually wrapped around a catheter six times to form six concentric layers before implantation into the omentum of Lewis rats. Cellular infiltration and vascular ingrowth were examined after 2 wk. RESULTS Histologic analysis of 14-d samples showed that scaffolds with laser cut pores had close to 40% more cellular infiltration and increased vascular ingrowth in the innermost layers of the construct compared with the control group. Despite keeping pore area percentage constant between the three groups, the sheets with the largest pore size performed better than those with the smallest pore sizes. CONCLUSIONS Porosity is the primary factor limiting the extensive use of electrospun scaffolds in tissue engineering. Our method of LASER cutting pores in electrospun fibrous scaffolds ensures uniform pore sizes, easily controllable and customizable pores, and enhances cellular infiltration and vascular ingrowth, demonstrating significant advancement toward utility of electrospun scaffolds in tissue engineering.


PLOS ONE | 2016

Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids

Joshua D. Rouch; Andrew Scott; Nan Ye Lei; R. Sergio Solorzano-Vargas; Jiafang Wang; Elaine M. Hanson; Masae Kobayashi; Michael Lewis; Matthias Stelzner; James C.Y. Dunn; Lars Eckmann; Martin G. Martin

Background & Aims Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer’s patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. Methods Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. Results Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. Conclusions Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.


Biomaterials | 2015

Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle

Masae Kobayashi; Nan Ye Lei; Qianqian Wang; Benjamin M. Wu; James C.Y. Dunn

Controlling cellular alignment is critical in engineering intestines with desired structure and function. Although previous studies have examined the directional alignment of cells on the surface (x-y plane) of parallel fibers, quantitative analysis of the cellular alignment inside implanted scaffolds with oriented fibers has not been reported. This study examined the cellular alignment in the x-z and y-z planes of scaffolds made with two layers of orthogonally oriented fibers. The cellular orientation inside implanted scaffolds was evaluated with immunofluorescence. Quantitative analysis of coherency between cell orientation and fiber direction confirmed that cells aligned along the fibers not only on the surface (x-y plane) but also inside the scaffolds (x-z & y-z planes). Our study demonstrated that two layers of orthogonally aligned scaffolds can generate the histological organization of cells similar to that of intestinal circular and longitudinal smooth muscle.


Surgery | 2011

Controlled release of vascular endothelial growth factor enhances intestinal adaptation in rats with extensive small intestinal resection.

Nan Ye Lei; Garret Ma; Tatiana Zupekan; Rebecca Stark; Mark Puder; James C.Y. Dunn

BACKGROUND Vascular endothelial growth factor (VEGF) has been shown to be an essential factor in the intestinal adaption after extensive bowel resection. The present study investigates the controlled release of VEGF as a way to improve intestinal adaptation. MATERIALS AND METHODS Biodegradable microspheres with or without VEGF were made using a double emulsion technique. Approximately 80% of the small intestine was removed, leaving the entire duodenum, 10 cm of jejunum, and 7 cm of ileum. The microspheres were distributed on the anastomosed small bowel. The animals were sacrificed after 14 days, and the adapted jejunum and ileum were analyzed for sucrase activity and histologic parameters. RESULTS The average villus lengths of the adapted jejunum and ileum were 680 and 350 μm in rats that received blank microspheres, compared to 810 and 720 μm in rats that received VEGF microspheres. The average sucrase activity of the adapted jejunum and ileum was 0.0202 and 0.0073 μmol/mg protein/min in rats that received blank microspheres, compared with 0.0236 and 0.0232 μmmol/mg protein/min in rats that received VEGF microspheres. CONCLUSION The data suggest that the controlled delivery of VEGF from microspheres enhances the adaptation of the small intestine in rats. The controlled delivery of VEGF over time can potentially be used in patients following extensive intestinal resection.


Scientific Reports | 2018

Bioengineering functional smooth muscle with spontaneous rhythmic contraction in vitro

Masae Kobayashi; Hassan A. Khalil; Nan Ye Lei; Qianqian Wang; Ke Wang; Benjamin M. Wu; James C.Y. Dunn

Oriented smooth muscle layers in the intestine contract rhythmically due to the action of interstitial cells of Cajal (ICC) that serve as pacemakers of the intestine. Disruption of ICC networks has been reported in various intestinal motility disorders, which limit the quality and expectancy of life. A significant challenge in intestinal smooth muscle engineering is the rapid loss of function in cultured ICC and smooth muscle cells (SMC). Here we demonstrate a novel approach to maintain the function of both ICC and SMC in vitro. Primary intestinal SMC mixtures cultured on feeder cells seeded electrospun poly(3-caprolactone) scaffolds exhibited rhythmic contractions with directionality for over 10 weeks in vitro. The simplicity of this system should allow for wide usage in research on intestinal motility disorders and tissue engineering, and may prove to be a versatile platform for generating other types of functional SMC in vitro.


PLOS ONE | 2015

Primary Myofibroblasts Maintain Short-Term Viability following Submucosal Injection in Syngeneic, Immune-Competent Mice Utilizing Murine Colonoscopy.

Hassan A. Khalil; Nan Ye Lei; Wenxian Nie; Michael S. Lewis; Matthias Stelzner; Martin G. Martin; James C.Y. Dunn; James Yoo

The myofibroblast is an important stromal cell of the gastrointestinal tract. Current in vitro and in vivo models either do not accurately recreate stromal-epithelial interactions or are not specific to myofibroblasts. We sought to create an animal model that would allow the study of myofibroblast-epithelial interactions. We isolated and cultured colonic myofibroblasts from FVB mice. Cells were α-SMA and vimentin positive but desmin negative on immunoblot analysis. We injected the myofibroblasts into the colonic submucosa of syngeneic adult mice (n = 8) via a miniendoscopic system. We then isolated green fluorescent protein (GFP) positive colonic myofibroblasts from C57BL/6-Tg(CAG-EGFP)1Osb/J mice and injected them into the colonic lamina propria of C57BL/6J mice at 1x105 (n = 14), 1x106 (n = 9), or 5x106 cells/mL (n = 4). A subset of mice were injected with serum-free media and ink without cells (n = 3). Mice underwent repeat endoscopy and euthanasia one or 7 days after injection. Colons were isolated and either fixed in 10% formalin or the inked sites were individually excised and lysed for DNA. We assessed the injection sites via histology and immunohistochemical stains for α-SMA and GFP. We used qPCR to quantify GFP DNA transcripts at the lamina propria injection sites. Submucosal injection of myofibroblasts resulted in the formation of a subepithelial wheal on endoscopy, which persisted to day 7. Myofibroblasts injected either into the submucosa or lamina propria maintained viability on post-injection day 7 as evidenced by positive α-SMA staining. qPCR of lamina propria injections showed a dose-dependent increase in GFP DNA transcripts on post-injection day 1, whereas the number of transcripts on day 7 was equivalent for the concentrations injected. We demonstrate short-term survival of primary cultured colonic myofibroblasts in syngeneic mice. This may prove to be a valuable model for studying the role of myofibroblasts in states of health and disease.

Collaboration


Dive into the Nan Ye Lei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiafang Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Ziyad Jabaji

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin M. Wu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge