Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nana Burns is active.

Publication


Featured researches published by Nana Burns.


Circulation Research | 2007

Rho Kinase–Mediated Vasoconstriction Is Important in Severe Occlusive Pulmonary Arterial Hypertension in Rats

Masahiko Oka; Noriyuki Homma; Laimute Taraseviciene-Stewart; Kenneth G. Morris; Donatas Kraskauskas; Nana Burns; Norbert F. Voelkel; Ivan F. McMurtry

Vascular remodeling, rather than vasoconstriction, is believed to account for high vascular resistance in severe pulmonary arterial hypertension (PAH). We have found previously that acute Rho kinase inhibition nearly normalizes PAH in chronically hypoxic rats that have no occlusive neointimal lesions. Here we examined whether Rho kinase-mediated vasoconstriction was also important in a rat model of severe occlusive PAH. Adult rats were exposed to chronic hypoxia (≈10% O2) after subcutaneous injection of the vascular endothelial growth factor receptor inhibitor SUGEN 5416. Hemodynamic measurements were made in anesthetized rats after 2 weeks of hypoxia (early group) and 3 weeks of hypoxia plus 2 weeks of normoxia (late group). Both groups developed PAH, with greater severity in the late group. In the early group, intravenous fasudil was more effective than intravenous bradykinin, inhaled NO, or intravenous iloprost in reducing right ventricular systolic pressure. Despite more occlusive vascular lesions, fasudil also markedly reduced right ventricular systolic pressure in late-stage rats. Blood-perfused lungs from late-stage rats showed spontaneous vasoconstriction, which was reversed partially by the endothelin A receptor blocker BQ123 and completely by fasudil or Y-27632. Phosphorylation of MYPT1, a downstream target of Rho kinase, was increased in lungs from both groups of rats, and fasudil (intravenous) reversed the increased phosphorylation in the late group. Thus, in addition to structural occlusion, Rho kinase-mediated vasoconstriction is an important component of severe PAH in SUGEN 5416/hypoxia-exposed rats, and PAH can be significantly reduced in the setting of a severely remodeled lung circulation if an unconventional vasodilator is used.


Cardiovascular Research | 2008

Hypoxia exposure induces the emergence of fibroblasts lacking replication repressor signals of PKCζ in the pulmonary artery adventitia

Mita Das; Nana Burns; Shelly J. Wilson; Wojciech M. Zawada; Kurt R. Stenmark

AIMS Cultured fibroblasts of hypoxia-stimulated remodelled pulmonary artery (PA) adventitia proliferate at a greater rate compared with those of normal adventitia. Since protein kinase C (PKC) zeta is a replication repressor of normal adventitial fibroblasts, we hypothesized that loss of the repressor activity of PKCzeta might contribute to increased rate of proliferation in adventitial cells of remodelled PA. METHODS AND RESULTS Isolated PA adventitial fibroblasts of neonatal control (Fib-C) and chronic hypoxia-exposed (Fib-H) calves were used to test our hypothesis. For evaluation of the role of PKCzeta in hypoxia-induced vascular adventitial remodelling, expression and activation of PKCzeta were also examined in lung sections of Fib-C and Fib-H animals by immunoperoxidase staining. Although constitutively active PKCzeta expression attenuated DNA synthesis in Fib-C, it stimulated proliferation in Fib-H. PKCzeta-specific myristoylated pseudosubstrate peptide inhibitor (PKCzeta-PI) induced replication in Fib-C, whereas the inhibitor blocked DNA synthesis in Fib-H. Hypoxia stimulated PKCzeta as well as MAP kinase kinase (MEK)1/2 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation in Fib-H cells. However, ERK1/2 activation was mediated by both MEK1/2-dependent and MEK1/2-independent PKCzeta-regulated mechanisms in hypoxia-exposed Fib-H. PKCzeta was selectively activated in the adventitial cells of the remodelled vascular wall, as demonstrated by strong immunoreactivity against the anti-phosphoPKCzeta antibody in the Fib-H lung sections. CONCLUSION PKCzeta acts as a replication repressor in Fib-C cells; however, the same isozyme mediates Fib-H proliferation. Thus, chronic exposure to hypoxia leads to the emergence of cells lacking anti-replication activity of PKCzeta in the PA adventitia.


American Journal of Physiology-cell Physiology | 2011

P2Y1 and P2Y13 purinergic receptors mediate Ca2+ signaling and proliferative responses in pulmonary artery vasa vasorum endothelial cells

Taras Lyubchenko; Heather Woodward; Kristopher D. Veo; Nana Burns; Hala Nijmeh; Ganna A. Liubchenko; Kurt R. Stenmark; Evgenia V. Gerasimovskaya

Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.


PLOS ONE | 2013

Adenosine A1 Receptors Promote Vasa Vasorum Endothelial Cell Barrier Integrity via Gi and Akt-Dependent Actin Cytoskeleton Remodeling

Nagavedi S. Umapathy; Elzbieta Kaczmarek; Nooreen Fatteh; Nana Burns; Rudolf Lucas; Kurt R. Stenmark; Alexander D. Verin; Evgenia V. Gerasimovskaya

Background In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC) may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co) or chronically hypoxic (VVEC-Hyp) neonatal calves. Principal Findings We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3), with the highest expression level of A1 receptors (A1Rs). However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF-α)-induced permeability in VVEC-Co, validating its anti-inflammatory effects. Conclusions We demonstrate for the first time that stimulation of A1Rs enhances the barrier function in VVEC by activation of the Gi/PI3K/Akt pathway and remodeling of actin microfilament.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

High proliferative potential endothelial colony-forming cells contribute to hypoxia-induced pulmonary artery vasa vasorum neovascularization

Hala Nijmeh; Vivek Balasubramaniam; Nana Burns; Aftab Ahmad; Kurt R. Stenmark; Evgenia V. Gerasimovskaya

Angiogenic expansion of the vasa vasorum (VV) is an important contributor to pulmonary vascular remodeling in the pathogenesis of pulmonary hypertension (PH). High proliferative potential endothelial progenitor-like cells have been described in vascular remodeling and angiogenesis in both systemic and pulmonary circulations. However, their role in hypoxia-induced pulmonary artery (PA) VV expansion in PH is not known. We hypothesized that profound PA VV neovascularization observed in a neonatal calf model of hypoxia-induced PH is due to increased numbers of subsets of high proliferative cells within the PA adventitial VV endothelial cells (VVEC). Using a single cell clonogenic assay, we found that high proliferative potential colony-forming cells (HPP-CFC) comprise a markedly higher percentage in VVEC populations isolated from the PA of hypoxic (VVEC-Hx) compared with control (VVEC-Co) calves. VVEC-Hx populations that comprised higher numbers of HPP-CFC also demonstrated markedly higher expression levels of CD31, CD105, and c-kit than VVEC-Co. In addition, significantly higher expression of CD31, CD105, and c-kit was observed in HPP-CFC vs. the VVEC of the control but not of hypoxic animals. HPP-CFC exhibited migratory and tube formation capabilities, two important attributes of angiogenic phenotype. Furthermore, HPP-CFC-Co and some HPP-CFC-Hx exhibited elevated telomerase activity, consistent with their high replicative potential, whereas a number of HPP-CFC-Hx exhibited impaired telomerase activity, suggestive of their senescence state. In conclusion, our data suggest that hypoxia-induced VV expansion involves an emergence of HPP-CFC populations of a distinct phenotype with increased angiogenic capabilities. These cells may serve as a potential target for regulating VVEC neovascularization.


Oncotarget | 2015

Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage

Pengyun Li; Xianzhong Meng; Huining Bian; Nana Burns; Ke-seng Zhao; Rui Song

Vascular hyporeactivity is one of the major causes responsible for refractory hypotension and associated mortality in severe hemorrhagic shock. Mitochondrial permeability transition (mPT) pore opening in arteriolar smooth muscle cells (ASMCs) is involved in the pathogenesis of vascular hyporeactivity. However, the molecular mechanism underlying mitochondrial injury in ASMCs during hemorrhagic shock is not well understood. Here we produced an in vivo model of severe hemorrhagic shock in adult Wistar rats. We found that sirtuin (SIRT)1/3 protein levels and deacetylase activities were decreased in ASMCs following severe shock. Immunofluorescence staining confirmed reduced levels of SIRT1 in the nucleus and SIRT3 in the mitochondria, respectively. Acetylation of cyclophilin D (CyPD), a component of mPT pore, was increased. SIRT1 activators suppressed mPT pore opening and ameliorated mitochondrial injury in ASMCs after severe shock. Furthermore, administration of SIRT1 activators improved vasoreactivity in rats under severe shock. Our data suggest that epigenetic mechanisms, namely histone post-translational modifications, are involved in regulation of mPT by SIRT1/SIRT3- mediated deacetylation of CyPD. SIRT1/3 is a promising therapeutic target for the treatment of severe hemorrhagic shock.


American Journal of Pathology | 2011

Mitogen-activated protein kinase phosphatase-1 is a key regulator of hypoxia-induced vascular endothelial growth factor expression and vessel density in lung.

Kristin M Shields; Evgeniy Panzhinskiy; Nana Burns; W. Michael Zawada; Mita Das

Although mitogen-activated protein kinase phosphatase-1 (MKP-1) is a key deactivator of MAP kinases, known effectors of lung vessel formation, whether it plays a role in the expression of proangiogenic vascular endothelial growth factor (VEGF) in hypoxic lung is unknown. We therefore hypothesized that MKP-1 is a crucial modulator of hypoxia-stimulated vessel development by regulating lung VEGF levels. Wild-type MKP-1(+/+), heterozygous MKP-1(+/-), and deficient MKP-1(-/-) mice were exposed to sea level (SL), Denver altitude (DA) (1609 m [5280 feet]), and severe high altitude (HYP) (∼5182 m [∼17,000 feet]) for 6 weeks. Hypoxia enhanced phosphorylation of p38 MAP kinase, a substrate of MKP-1, as well as α smooth muscle actin (αSMA) expression in vessels, respiratory epithelium, and interstitium of phosphatase-deficient lung. αSMA-positive vessel (<50 μm outside diameter) densities were markedly reduced, whereas vessel wall thickness was increased in hypoxic MKP-1(-/-) lung. Mouse embryonic fibroblasts (MEFs) of all three genotypes were isolated to pinpoint the mechanism involved in hypoxia-induced vascular abnormalities of MKP-1(-/-) lung. Sustained phosphorylation of p38 MAP kinase was observed in MKP-1-null MEFs in response to hypoxia exposure. Although hypoxia up-regulated VEGF levels in MKP-1(+/+) MEFs eightfold, only a 70% increase in VEGF expression was observed in MKP-1-deficient cells. Therefore, our data strongly suggest that MKP-1 might be the key regulator of vascular densities through the regulation of VEGF levels in hypoxic lung.


Respiratory Research | 2010

Immunomodulatory strategies prevent the development of autoimmune emphysema

Masayuki Hanaoka; Mark R. Nicolls; Andrew P. Fontenot; Donatas Kraskauskas; Douglas G. Mack; Adelheid Kratzer; Jonas Salys; Vita Kraskauskiene; Nana Burns; Norbert F. Voelkel; Laimute Taraseviciene-Stewart

BackgroundThe presence of anti-endothelial cell antibodies and pathogenic T cells may reflect an autoimmune component in the pathogenesis of emphysema. Whether immune modulatory strategies can protect against the development of emphysema is not known.MethodsSprague Dawley rats were immunized with human umbilical vein endothelial cells (HUVEC) to induce autoimmune emphysema and treated with intrathymic HUVEC-injection and pristane. Measurements of alveolar airspace enlargement, cytokine levels, immuno histochemical, western blot analysis, and T cell repertoire of the lung tissue were performed.ResultsThe immunomodulatory strategies protected lungs against cell death as demonstrated by reduced numbers of TUNEL and active caspase-3 positive cells and reduced levels of active caspase-3, when compared with lungs from HUVEC-immunized rats. Immunomodulatory strategies also suppressed anti-endothelial antibody production and preserved CNTF, IL-1alpha and VEGF levels. The immune deviation effects of the intrathymic HUVEC-injection were associated with an expansion of CD4+CD25+Foxp3+ regulatory T cells. Pristane treatment decreased the proportion of T cells expressing receptor beta-chain, Vβ16.1 in the lung tissue.ConclusionsOur data demonstrate that interventions classically employed to induce central T cell tolerance (thymic inoculation of antigen) or to activate innate immune responses (pristane treatment) can prevent the development of autoimmune emphysema.


Vascular Cell | 2011

Complementary effects of extracellular nucleotides and platelet-derived extracts on angiogenesis of vasa vasorum endothelial cells in vitro and subcutaneous Matrigel plugs in vivo.

Hala Nijmeh; Nana Burns; Asya Sidiakova; Kurt R. Stenmark; Evgenia V. Gerasimovskaya

BackgroundPlatelets contribute to vascular homeostasis and angiogenesis through the release of multiple growth factors, cytokines and nucleotides, such as ATP and ADP. Recent reports have demonstrated a marked growth-promoting effect of total platelet extracts and selected platelet growth factors on therapeutic angiogenesis. However, since endogenous adenine nucleotides are rapidly degraded during the platelet isolation and storage, we examined whether supplementing a platelet-derived extract with exogenous adenine nucleotides would augment their pro-angiogenic effects.MethodsPulmonary artery vasa vasorum endothelial cells (VVEC) were used to examine the effects of dialyzed platelet-derived soluble extracts and extracellular adenine nucleotides on proliferation, migration and tube formation. In addition, an in vivo Matrigel plug assay was used to examine the effects of platelet extracts and adenine nucleotides on neovascularization of plugs subcutaneously placed in 50 ICR mice. The number of vascular structures in Matrigel plugs were evaluated by histological and statistical methods.ResultsPlatelet extracts (6.4-64 μg/ml) significantly induced DNA synthesis and at a concentration of 64 μg/ml had a biphasic effect on VVEC proliferation (an increase at 48 hrs followed by a decrease at 60 hrs). Stimulation of VVEC with platelet extracts also significantly (up to several-fold) increased cell migration and tube formation on Matrigel. Stimulation of VVEC with extracellular ATP (100 μM) dramatically (up to ten-fold) increased migration and tube formation on Matrigel; however, no significant effects on cell proliferation were observed. We also found that ATP moderately diminished platelet extract-induced VVEC proliferation (48 hrs) and migration, but potentiated tube formation. Neither ATP, or a mixture of non-hydrolyzable nucleotides (ATPγS, ADPβS, MeSATP, MeSADP) induced vascularization of Matrigel plugs subcutaneously injected in mice, however, the combination of these nucleotides with platelet extracts dramatically increased the number of functional capillaries in the Matrigel plugs.ConclusionData from this study suggest that platelet-derived growth factors and extracellular nucleotides represent important regulatory signals for angiogenesis. Supplementation of platelet extracts with exogenous adenine nucleotides may reveal new possibilities for therapeutic angiogenesis and tissue regeneration approaches.


American Journal of Physiology-cell Physiology | 2017

Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells

Martin Lapel; Philip Weston; Derek Strassheim; Vijaya Karoor; Nana Burns; Taras Lyubchenko; Petr Paucek; Kurt R. Stenmark; Evgenia V. Gerasimovskaya

Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension.

Collaboration


Dive into the Nana Burns's collaboration.

Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert F. Voelkel

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Hala Nijmeh

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlyne D. Cool

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Donatas Kraskauskas

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Mita Das

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elzbieta Kaczmarek

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge