Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nana Zhe is active.

Publication


Featured researches published by Nana Zhe.


Leukemia Research | 2015

Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway

Xiaojing Lin; Qin Fang; Shuya Chen; Nana Zhe; Qixiang Chai; Meisheng Yu; Yaming Zhang; Ziming Wang; Jishi Wang

There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.


Hematology | 2015

Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia

Nana Zhe; Jishi Wang; Shuya Chen; Xiaojing Lin; Qixiang Chai; Yaming Zhang; Jiangyuan Zhao; Qing Fang

Abstract Objectives The heme oxygenase-1 (HO-1) gene may contribute to the development of acquired chemoresistance in solid tumor cells, but its function in acute myeloid leukemia (AML) remains unclear. Therefore, we investigated whether the expressions of HO-1 mRNA and protein were associated with AML chemoresistance. Methods Bone marrow or peripheral blood was obtained from newly diagnosed (n = 26), relapsed (n = 10), and completely remitted (n = 18) patients with AML (M3 exclusion) and healthy donors (n = 10). Small interfering RNA was used to stably silence HO-1 gene expression in AML cell lines. The expressions of HO-1, hypoxia inducible factor-1ɑ (HIF-1ɑ), glucose transporter-1 (GLUT1) mRNA and proteins were measured by quantitative real-time PCR and Western blot. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction was analyzed by flow cytometry. Results The drug-resistant AML cell line HL-60R was significantly less sensitive to cytarabine and daunorubicin than HL-60 cells. HO-1 mRNA and proteins were highly expressed in HL-60R cells. However, down-regulating HO-1 significantly enhanced the sensitivity of HL-60R to chemotherapy, and the expressions of HIF-1ɑ and GLUT1 mRNA and proteins decreased. Meanwhile, the expressions of caspase-3 and caspase-8 proteins increased, while that of bcl-2 decreased. Overexpressions of HO-1, HIF-1ɑ, and GLUT1 were associated with poor response of AML to chemotherapy. Conclusions Overexpressions of HO-1, HIF-1ɑ, and GLUT1 might be involved in the chemoresistance of AML. HO-1 is a potential target to overcome the drug resistance of AML.


Cancer Biology & Therapy | 2016

HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia

Nana Zhe; Shuya Chen; Zhen Zhou; Ping Liu; Xiaojing Lin; Meisheng Yu; Bingqing Cheng; Yaming Zhang; Jishi Wang

ABSTRACT The bone marrow microenvironment plays an important role in the development and progression of AML. Leukemia stem cells are in a hypoxic condition, which induces the expression of HIF-1α. Aberrant activation of HIF-1α is implicated in the poor prognosis of patients with acute myeloid leukemia (AML). Herein, we investigated the expression of HIF-1α in AML and tested 2-methoxyestradiol (2ME2) as a candidate HIF-1α inhibitor for the treatment of AML. We found that HIF-1α was overexpressed in AML. HIF-1α suppression by 2ME2 significantly induced apoptosis of AML cells, and it outperformed traditional chemotherapy drugs such as cytarabine. At the same time, 2ME2 downregulated the transcriptional levels of VEGF, GLUT1 and HO-1 in cellular assays. Additionally, 2ME2 displayed antileukemia activity in bone marrow blasts from AML patients, but showed little effect on normal cells. 2ME2-induced activation of mitochondrial apoptotic pathway is mediated by reactive oxygen species (ROS), which decreased the slight effect of drug on normal cells. Our data show that supression of HIF-1α expression significantly reduced the survival of AML cell lines, suggesting that 2ME2 may represent a powerful therapeutic approach for patients with AML.


Biomedicine & Pharmacotherapy | 2017

Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes microenvironment-mediated imatinib resistance in chronic myeloid leukemia

Ping Liu; Dan Ma; Zhengyu Yu; Nana Zhe; Mei Ren; Ping Wang; Meisheng Yu; Jun Huang; Qin Fang; Jishi Wang

Neoplasm cells from patients with chronic myeloid leukemia (CML) interact with stromal cells of the surrounding microenvironment. Bone marrow stromal cells (BMSCs) represent the main population in CML marrow stroma, which may play a key role in disease support and progression. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism that is associated with cell proliferation and resistance to apoptosis. We herein up-regulated HO-1 expression of BMSCs and evaluated whether BMSCs influenced K562 cells survival. BMSCs were isolated from the bone marrow of normal people and CML patients. Following co-culture of BMSCs and K562 cells, up-regulating HO-1 expression in bone marrow stromal cells increased the imatinib (IM) resistance of K562 cells, whereas the apoptosis of K562 cells was effectively promoted without BMSCs co-culture. The protection may be mediated by CXCL12 (stromal derived factors 1, SDF-1)/CXCR4 signaling. The CXCL12/CXCR4 interaction significantly enhanced the phosphorylation of AKT. As far as drug resistance was concerned, BMSCs counteracted the cytotoxic effect of IM administration in vitro, and they protected K562 cells from the apoptosis induced by kinase inhibitor IM. The regulated HO-1 expression of BMSCs provides a new putative target for CML therapy.


Transplant Immunology | 2016

High expression of heme oxygenase-1 in target organs may attenuate acute graft-versus-host disease through regulation of immune balance of TH17/Treg

Meisheng Yu; Jishi Wang; Qin Fang; Ping Liu; Shuya Chen; Nana Zhe; Xiaojing Lin; Yaming Zhang; Jiangyuan Zhao; Zhen Zhou

The high incidence of acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Grades III and IV aGVHD are the leading causes of death in allo-HSCT recipients. Heme oxygenase-1(HO-1) has anti-inflammatory and immune-regulatory functions. In this study, we evaluated the none GVHD and grade I-IV patients samples which were collected at the first re-examination after successful allo-HSCT, we found that expressions of HO-1 mRNA in the bone marrow and peripheral blood mononuclear cells of allo-HSCT recipients who had subsequent non-GVHD and grade I aGVHD were significantly higher than those in patients with Grade III-IV aGVHD. We then demonstrated that enhanced expression of HO-1 in target organs by infusing HO-1-gene-modified Mesenchymal stem cells (MSCs) alleviated the clinical and histopathological severity of aGVHD in experimental mice. Flow cytometry revealed a higher expression of Treg cells and a lower expression of TH17 cells in splenic and lymph node tissues of mice with enhanced HO-1 expression, as compared to that in the aGVHD mice. This was further substantiated by lower expression levels of ROR-Υt and IL-17A mRNA, and higher levels of Foxp3 mRNA in the splenic tissue of mice with enhanced HO-1 expression. Our results indicate that high expression of HO-1 may reduce the severity of aGVHD by regulation of the TH17/Treg balance.


Anti-Cancer Drugs | 2018

Histone deacetylase inhibitor BG45-mediated HO-1 expression induces apoptosis of multiple myeloma cells by the JAK2/STAT3 pathway.

Sishi Tang; Bingqing Cheng; Nana Zhe; Dan Ma; Jibing Xu; Xinyao Li; Yongling Guo; Weibing Wu; Jishi Wang

Multiple myeloma (MM) is a hematological malignancy that is characterized by the clonal expansion of plasma cells in the bone marrow. Histone deacetylases (HDACs) represent a new type of molecular targeted therapy for different types of cancers and promising targets for myeloma therapy. We showed that HDAC3 mRNA and protein levels of CD138+ mononuclear cells from MM patients were higher than those in healthy donors. Therefore, we investigated the effects of a novel class I HDAC inhibitor BG45 on MM cells in vitro. BG45 downmodulated heme oxygenase 1 (HO-1) when class I HDACs decreased in MM cells. HO-1 is a target for the treatment of MM. Moreover, BG45 induced hyperacetylation of histone H3 and inhibited the growth, especially the apoptosis of MM cell lines. Treatment with BG45 induced apoptosis by downregulating bcl-2 and Bcl-xl, upregulating Bax and other antiapoptotic proteins and activating poly(ADP-ribose)polymerase, and decreasing protein levels of p-JAK2 and p-STAT3. These effects were partly blocked by HO-1. Correspondingly, BG45 led to an accumulation in the G0/G1 phase, accompanied by decreased levels of CDK4 and phospho-retinoblastoma protein, an increased level of p21, and a moderately reduced level of CDK2. Clinical use of single agents was limited because of toxic side effects and drug resistance. However, combining BG45 with lenalidomide exerted synergistic effects. In conclusion, we verified the potent antimyeloma activity of this novel HDAC inhibitor and that the combination of BG45 and lenalidomide is a new method for MM treatment. Thus, BG45 may be applicable to the treatment of MM and other hematological malignancies.


Oncotarget | 2016

Targeting of Heme oxygenase-1 attenuates the negative impact of Ikaros isoform 6 in adult BCR-ABL1-positive B-ALL.

Xiaojing Lin; Xingli Zou; Ziming Wang; Qin Fang; Shuya Chen; Jun Huang; Nana Zhe; Meisheng Yu; Yaming Zhang; Jishi Wang

The correlation between Heme oxygenase-1 (HO-1) and dominant-negative Ikaros isoform 6 (IK6) is unclear. Firstly, we detected that IK6 existed in 20 of 42 (47.6%) adult BCR-ABL1-positive B-lineage acute lymphoblastic leukemia (BCR-ABL1-positive B-ALL) by using reverse transcribed polymerase chain reaction (PCR) and nucleotide sequencing. IK6-positive patients had an unfavorable outcome compared with IK6-negative ones. Further study showed that the level of HO-1 expression was higher in IK6-positive patients’ samples than that in IK6-negative ones. And there was a strong correlation between the expression of IK6 and HO-1. The growth of primary CD34+ leukemic cells derived from our IK6-positive patients’ pool was prohibited by silencing HO-1, further promoting their apoptosis. Furthermore, primary CD34+ leukemic cells derived from IK6-positive patients shown poor responses to imatinib in comparison with wild-type (IK1) patients, suggesting that the expression of IK6 resisted to imatinib in adult BCR-ABL1-positive B-ALL. Importantly, inhibition of HO-1 also increased their sensitivity to tyrosine kinase inhibitors (TKIs). Finally, we found that IK6 activated downstream STAT5, and HO-1 was one of the downstream target genes of STAT5. In conclusion, HO-1 is an essential survival factor in BCR-ABL1-positive B-ALL with IK6, and targeting HO-1 can attenuate the negative impact of IK6.


Oncotarget | 2017

Silencing heme oxygenase-1 increases the sensitivity of ABC-DLBCL cells to histone deacetylase inhibitor in vitro and in vivo

Zhen Zhou; Qin Fang; Dan Ma; Nana Zhe; Mei Ren; Bingqing Cheng; Peifan Li; Ping Liu; Xiaojing Lin; Sishi Tang; Xiuying Hu; Yudan Liao; Yaming Zhang; Tingting Lu; Jishi Wang

Heme oxygenase-1 (HO-1) can promote tumor growth and reinforce the resistance of diffuse large B-cell lymphoma (DLBCL) cells to chemotherapeutic drug vincristine. We herein found that HO-1 protein expression was higher in high-risk DLBCL patients than in low-risk ones. Silencing HO-1 gene expression resisted vorinostat-induced apoptosis and arrested cell cycle in the G0/G1 phase of LY-10 cells. Western blot, co-immunoprecipitation and chromatin immunoprecipitation assays confirmed that the possible mechanisms may be increased cleaved caspase-3 protein expression, decreased phospho-histone deacetylase 3 protein expression, and activated histone acetylation of P27Kip1 promoter. Moreover, silencing HO-1 gene expression enhanced vorinostat-induced tumor cell apoptosis, prolonged survival time and promoted P27Kip1 protein expression in a xenograft mouse model.In conclusion, HO-1 is a potential therapeutic target of DLBCL. The findings provide a valuable preclinical evidence for sensitizing DLBCL patients with poor prognosis to histone deacetylase inhibitors.Heme oxygenase-1 (HO-1) can promote tumor growth and reinforce the resistance of diffuse large B-cell lymphoma (DLBCL) cells to chemotherapeutic drug vincristine. We herein found that HO-1 protein expression was higher in high-risk DLBCL patients than in low-risk ones. Silencing HO-1 gene expression resisted vorinostat-induced apoptosis and arrested cell cycle in the G0/G1 phase of LY-10 cells. Western blot, co-immunoprecipitation and chromatin immunoprecipitation assays confirmed that the possible mechanisms may be increased cleaved caspase-3 protein expression, decreased phospho-histone deacetylase 3 protein expression, and activated histone acetylation of P27Kip1 promoter. Moreover, silencing HO-1 gene expression enhanced vorinostat-induced tumor cell apoptosis, prolonged survival time and promoted P27Kip1 protein expression in a xenograft mouse model. In conclusion, HO-1 is a potential therapeutic target of DLBCL. The findings provide a valuable preclinical evidence for sensitizing DLBCL patients with poor prognosis to histone deacetylase inhibitors.


Biomedicine & Pharmacotherapy | 2018

Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1

Bingqing Cheng; Sishi Tang; Nana Zhe; Dan Ma; Kunlin Yu; Danna Wei; Zheng Zhou; Tingting Lu; Jishi Wang; Qin Fang

To improve the treatment outcomes of acute myeloid leukemia (AML), epigenetic modification has been widely tested and used in recent years. However, drug-resistance is still a choke point to cure the malignancy. The growth factor independent 1 transcriptional repressor (GFI-1), as a zinc-finger transcriptional repressor, can bind histone deacetylases to allow the transcriptional repression. According to the finding of our study, AML patients with low level of GFI-1 not only implicated poor prognosis but also caused Panobinostat-resistance. In our prevent study revealed that heme oxygenase-1(HO-1) was one of the main factors leading to chemotherapy sensitivity to AML. Thus, this study tried to test the correlation between GFI-1 and HO-1. Our study discovered that AML patients with lower expression of GFI-1 had higher level of HO-1, HDAC1, HDAC2 and HDAC3, which resulted in poor prognosis in AML. The results of the in vitro study were the same. Panobinostat is a promising new class of anti-cancer drugs in AML. However, knocking down GFI-1 by siRNA could eliminate the Panobinostat-induced cell apoptosis. Subsequently, we utilized ZnPP to down regulate the level of HO-1, finding that the Panobinostat-resistance between the low level of GFI-1 and empty vector had eased. After further exploring the mechanism, it could be found that with knock down GFI-1, the phosphorylation of Akt and PI3K could be activated. Subsequently, Akt pathway and HO-1 inhibitor were utilized respectively and the resistance was reversed. It suggested that the resistance of Panobinostat to AML cells at low level of GFI-1 was mainly due to up-regulated level of HO-1 through the PI3K-Akt pathway.


Oncology Letters | 2015

HO-1, RET and PML as possible markers for risk stratification of acute myelocytic leukemia and prognostic evaluation

Meisheng Yu; Jishi Wang; Dan Ma; Shuya Chen; Xiaojing Lin; Qin Fang; Nana Zhe

Collaboration


Dive into the Nana Zhe's collaboration.

Top Co-Authors

Avatar

Jishi Wang

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Qin Fang

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Lin

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Meisheng Yu

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Shuya Chen

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Dan Ma

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Ping Wang

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Qing Fang

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Weibing Wu

Guiyang Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiuying Hu

Guiyang Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge