Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy A. Monteiro-Riviere is active.

Publication


Featured researches published by Nancy A. Monteiro-Riviere.


Particle and Fibre Toxicology | 2005

Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy

Günter Oberdörster; Andrew D. Maynard; Ken Donaldson; Vincent Castranova; Julie W. Fitzpatrick; Kevin D. Ausman; Janet M. Carter; Barbara Karn; Wolfgang G. Kreyling; David Y. Lai; Stephen S. Olin; Nancy A. Monteiro-Riviere; David B. Warheit; Hong Yang

AbstractThe rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays.There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered.Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.


Toxicology and Applied Pharmacology | 2009

Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line

Nancy A. Monteiro-Riviere; Alfred O. Inman; Leshuai W. Zhang

Single-walled carbon nanotubes (SWCNT), fullerenes (C(60)), carbon black (CB), nC(60), and quantum dots (QD) have been studied in vitro to determine their toxicity in a number of cell types. Here, we report that classical dye-based assays such as MTT and neutral red (NR) that determine cell viability produce invalid results with some NM (nanomaterials) due to NM/dye interactions and/or NM adsorption of the dye/dye products. In this study, human epidermal keratinocytes (HEK) were exposed in vitro to CB, SWCNT, C(60), nC(60), and QD to assess viability with calcein AM (CAM), Live/Dead (LD), NR, MTT, Celltiter 96 AQueous One (96 AQ), alamar Blue (aB), Celltiter-Blue (CTB), CytoTox Onetrade mark (CTO), and flow cytometry. In addition, trypan blue (TB) was quantitated by light microscopy. Assay linearity (R(2) value) was determined with HEK plated at concentrations from 0 to 25,000 cells per well in 96-well plates. HEK were treated with serial dilutions of each NM for 24 h and assessed with each of the viability assays. TB, CAM and LD assays, which depend on direct staining of living and/or dead cells, were difficult to interpret due to physical interference of the NM with cells. Results of the dye-based assays varied a great deal, depending on the interactions of the dye/dye product with the carbon nanomaterials (CNM). Results show the optimal high throughput assay for use with carbon and noncarbon NM was 96 AQ. This study shows that, unlike small molecules, CNM interact with assay markers to cause variable results with classical toxicology assays and may not be suitable for assessing nanoparticle cytotoxicity. Therefore, more than one assay may be required when determining nanoparticle toxicity for risk assessment.


Toxicological Sciences | 2009

Mechanisms of Quantum Dot Nanoparticle Cellular Uptake

Leshuai W. Zhang; Nancy A. Monteiro-Riviere

Due to the superior photoemission and photostability characteristics, quantum dots (QD) are novel tools in biological and medical applications. However, the toxicity and mechanism of QD uptake are poorly understood. QD nanoparticles with an emission wavelength of 655 nm are ellipsoid in shape and consist of a cadmium/selenide core with a zinc sulfide shell. We have shown that QD with a carboxylic acid surface coating were recognized by lipid rafts but not by clathrin or caveolae in human epidermal keratinocytes (HEKs). QD were internalized into early endosomes and then transferred to late endosomes or lysosomes. In addition, 24 endocytic interfering agents were used to investigate the mechanism by which QD enter cells. Our results showed that QD endocytic pathways are primarily regulated by the G-protein-coupled receptor associated pathway and low density lipoprotein receptor/scavenger receptor, whereas other endocytic interfering agents may play a role but with less of an inhibitory effect. Lastly, low toxicity of QD was shown with the 20 nM dose in HEK at 48 h but not at 24 h by the live/dead cell assay. QD induced more actin filaments formation in the cytoplasm, which is different from the actin depolymerization by cadmium. These findings provide insight into the specific mechanism of QD nanoparticle uptake in cells. The surface coating, size, and charge of QD nanoparticles are important parameters in determining how nanoparticle uptake occurs in mammalian cells for cancer diagnosis and treatment, and drug delivery.


Environmental Health Perspectives | 2009

Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro

Meghan E. Samberg; Steven J. Oldenburg; Nancy A. Monteiro-Riviere

Introduction Products using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin. Objectives This study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo. Materials and Methods We used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured. Results The effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin. Conclusion This study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated.


Toxicological Sciences | 2011

Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study

Nancy A. Monteiro-Riviere; Karin Wiench; Robert Landsiedel; S. Schulte; Alfred O. Inman; Jim E. Riviere

Sunscreens containing titanium dioxide (TiO(2)) and zinc oxide (ZnO) nanoparticles (NP) are effective barriers against ultraviolet B (UVB) damage to skin, although little is known about their disposition in UVB-damaged skin. Pigs were exposed to UVB that resulted in moderate sunburn. For in vitro studies, skin in flow-through diffusion cells were treated 24 h with four sunscreen formulations as follows: 10% coated TiO(2) in oil/water (o/w), 10% coated TiO(2) in water/oil (w/o), 5% coated ZnO in o/w, and 5% uncoated ZnO in o/w. TiO(2) (rutile, crystallite) primary particle size was 10 × 50 nm with mean agglomerates of 200 nm (range ca. 90 nm--460 nm); mean for ZnO was 140 nm (range ca. 60--200 nm). Skin was processed for light microscopy, scanning (SEM) and transmission electron microscopy (TEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). UVB-exposed skin had typical sunburn histology. TEM showed TiO(2) NP 17 layers into stratum corneum (SC), whereas ZnO remained on the surface. TOF-SIMS showed TiO(2) and ZnO epidermal penetration in both treatments. Perfusate analyzed by TEM/energy dispersive x-ray spectroscopy or inductively coupled plasma mass spectrometry detected no Ti or Zn, indicating minimal transdermal absorption. In vivo, skin was dosed at 24 h occluded with formulations and at 48 h. TiO(2) NP in o/w formulation penetrated 13 layers into UVB-damaged SC, whereas only 7 layers in normal skin; TiO(2) in w/o penetrated deeper in UVB-damaged SC. Coated and uncoated Zn NP in o/w were localized to the upper one to two SC layers in all skin. By SEM, NP were localized as agglomerates in formulation on the skin surface and base of hair. TOF-SIMS showed Ti within epidermis and superficial dermis, whereas Zn was limited to SC and upper epidermis in both treatments. In summary, UVB-damaged skin slightly enhanced TiO(2) NP or ZnO NP penetration in sunscreen formulations but no transdermal absorption was detected.


Toxicology and Applied Pharmacology | 2008

Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes

Leshuai W. Zhang; William W. Yu; Vicki L. Colvin; Nancy A. Monteiro-Riviere

Quantum dots nanoparticles have novel optical properties for biomedical applications and electronics, but little is known about their skin permeability and interaction with cells. QD621 are nail-shaped nanoparticles that contain a cadmium/selenide core with a cadmium sulfide shell coated with polyethylene glycol (PEG) and are soluble in water. QD were topically applied to porcine skin flow-through diffusion cells to assess penetration at 1 microM, 2 microM and 10 microM for 24 h. QD were also studied in human epidermal keratinocytes (HEK) to determine cellular uptake, cytotoxicity and inflammatory potential. Confocal microscopy depicted the penetration of QD621 through the uppermost stratum corneum (SC) layers of the epidermis and fluorescence was found primarily in the SC and near hair follicles. QD were found in the intercellular lipid bilayers of the SC by transmission electron microscopy (TEM). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD both did not detect Cd nor fluorescence signal in the perfusate at any time point or concentration. In HEK, viability decreased significantly (p<0.05) from 1.25 nM to 10 nM after 24 h and 48 h. There was a significant increase in IL-6 at 1.25 nM to 10 nM, while IL-8 increased from 2.5 nM to 10 nM after 24 h and 48 h. TEM of HEK treated with 10 nM of QD621 at 24 h depicted QD in cytoplasmic vacuoles and at the periphery of the cell membranes. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, yet if the skin were damaged allowing direct QD exposure to skin or keratinocytes, an inflammatory response could be initiated.


Environmental Health Perspectives | 2007

Meeting Report: Hazard Assessment for Nanoparticles—Report from an Interdisciplinary Workshop

John Balbus; Andrew D. Maynard; Vicki L. Colvin; Vincent Castranova; George P. Daston; Richard A. Denison; Kevin L. Dreher; Peter L. Goering; Alan M. Goldberg; Kristen M. Kulinowski; Nancy A. Monteiro-Riviere; Günter Oberdörster; Gilbert S. Omenn; Kent E. Pinkerton; Kenneth S. Ramos; Kathleen M. Rest; Jennifer Sass; Ellen K. Silbergeld; Brian A Wong

In this report we present the findings from a nanotoxicology workshop held 6–7 April 2006 at the Woodrow Wilson International Center for Scholars in Washington, DC. Over 2 days, 26 scientists from government, academia, industry, and nonprofit organizations addressed two specific questions: what information is needed to understand the human health impact of engineered nanoparticles and how is this information best obtained? To assess hazards of nanoparticles in the near-term, most participants noted the need to use existing in vivo toxicologic tests because of their greater familiarity and interpretability. For all types of toxicology tests, the best measures of nanoparticle dose need to be determined. Most participants agreed that a standard set of nanoparticles should be validated by laboratories worldwide and made available for benchmarking tests of other newly created nanoparticles. The group concluded that a battery of tests should be developed to uncover particularly hazardous properties. Given the large number of diverse materials, most participants favored a tiered approach. Over the long term, research aimed at developing a mechanistic understanding of the numerous characteristics that influence nanoparticle toxicity was deemed essential. Predicting the potential toxicity of emerging nanoparticles will require hypothesis-driven research that elucidates how physicochemical parameters influence toxic effects on biological systems. Research needs should be determined in the context of the current availability of testing methods for nanoscale particles. Finally, the group identified general policy and strategic opportunities to accelerate the development and implementation of testing protocols and ensure that the information generated is translated effectively for all stakeholders.


International Journal of Toxicology | 2007

Biological Interactions of Functionalized Single-Wall Carbon Nanotubes in Human Epidermal Keratinocytes

Leshuai W. Zhang; Liling Zeng; Andrew R. Barron; Nancy A. Monteiro-Riviere

Carbon nanotube–based nanovectors, especially functionalized nanotubes, have shown potential for therapeutic drug delivery. 6-Aminohexanoic acid–derivatized single-wall carbon nanotubes (AHA-SWNTs) are soluble in aqueous stock solutions over a wide range of physiologically relevant conditions; however, their interactions with cells and their biological compatibility has not been explored. Human epidermal keratinocytes (HEKs) were dosed with AHA-SWNTs ranging in concentration from 0.00000005 to 0.05 mg/ml. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability decreased significantly (p < .05) from 0.00005 to 0.05 mg/ml after 24 h. The proinflammatory mediators of inflammation cytokines interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, IL-10, and IL-1β were also assessed. Cytokine analysis did not show a significant increase in IL-6 and IL-8 in the medium containing 0.000005 mg/ml of AHA-SWNTs from 1 to 48 h. IL-6 increased in cells treated with 0.05 mg/ml of AHA-SWNTs from 1 to 48 h, whereas IL-8 showed a significant increase at 24 and 48 h. No significant difference (p < .05) was noted with TNF-α, IL-10, and IL-1β expression at any time point. Transmission electron microscopy of HEKs treated with 0.05 mg/ml AHA-SWNTs for 24 h depicted AHA-SWNTs localized within intracytoplasmic vacuoles in HEKs. Treatment with the surfactant 1% Pluronic F127 caused dispersion of the AHA-SWNT aggregates in the culture medium and less toxicity. These data showed that the lower concentration of 0.000005 mg/ml of AHA-SWNTs maintains cell viability and induces a mild cytotoxicity, but 0.05 mg/ml of AHA-SWNTs demonstrated an irritation response by the increase in IL-8.


Toxicological Sciences | 1986

The isolated perfused porcine skin flap (IPPSF). I. A novel in vitro model for percutaneous absorption and cutaneous toxicology studies.

J. Edmond Riviere; Karl F. Bowman; Nancy A. Monteiro-Riviere; Lynn P. Dix; Michael P. Carver

This article describes the development of a novel in vitro alternative animal model for dermatology and cutaneous toxicology. A single-pedicle, axial-pattern, island-tubed skin flap was created in crossbred Yorkshire weanling pigs in one surgical procedure, then transferred 2 or 6 days later to a computer-controlled temperature-regulated perfusion chamber for 10-to 12-hr studies. Perfusate consisted of Krebs-Ringer bicarbonate buffer (pH 7.4) containing albumin and glucose. Viability was assessed by glucose utilization, lactate production, an absence of significant concentrations of the intracellular enzyme lactate dehydrogenase in the perfusate, and light and electron microscopy. A mean lactate to glucose ratio of 1.6 for flaps harvested 2 days after surgery and 1.8 for flaps taken 6 days after surgery suggested primarily anaerobic glycolysis. This preparation would be a humane alternative animal model for studies in cutaneous toxicology, physiology, oncology, and percutaneous drug absorption and metabolism.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2009

Nanoporous membranes for medical and biological applications.

Shashishekar P. Adiga; Chunmin Jin; Larry A. Curtiss; Nancy A. Monteiro-Riviere; Roger J. Narayan

Synthetic nanoporous materials have numerous potential biological and medical applications that involve sorting, sensing, isolating, and releasing biological molecules. Nanoporous systems engineered to mimic natural filtration systems are actively being developed for use in smart implantable drug delivery systems, bioartificial organs, and other novel nano-enabled medical devices. Recent advances in nanoscience have made it possible to precisely control the morphology as well as physical and chemical properties of the pores in nanoporous materials that make them increasingly attractive for regulating and sensing transport at the molecular level. In this work, an overview of nanoporous membranes for biomedical applications is given. Various in vivo and in vitro membrane applications, including biosensing, biosorting, immunoisolation, and drug delivery, are presented. Different types of nanoporous materials and their fabrication techniques are discussed with an emphasis on membranes with ordered pores. Desirable properties of membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are discussed. The use of surface modification techniques to improve the function of nanoporous membranes is reviewed. Despite the extensive research carried out in fabrication, characterization, and modeling of nanoporous materials, there are still several challenges that must be overcome in order to create synthetic nanoporous systems that behave similarly to their biological counterparts.

Collaboration


Dive into the Nancy A. Monteiro-Riviere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfred O. Inman

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Roger J. Narayan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

James D. Brooks

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ronald E. Baynes

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Xin-Rui Xia

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaun D. Gittard

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Meghan E. Samberg

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Aleksandr Ovsianikov

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge