Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy A. Muma is active.

Publication


Featured researches published by Nancy A. Muma.


Annals of Neurology | 2002

An R5L τ mutation in a subject with a progressive supranuclear palsy phenotype

Parvoneh Poorkaj; Nancy A. Muma; Victoria Zhukareva; Elizabeth J. Cochran; Kathleen M. Shannon; Howard I. Hurtig; William C. Koller; Bird Td; John Q. Trojanowski; Virginia M.-Y. Lee; Gerard D. Schellenberg

MAPT, the gene encoding tau, was screened for mutations in 96 progressive supranuclear palsy subjects. A point mutation (R5L) was identified in a single progressive supranuclear palsy subject that was not in the other progressive supranuclear palsy subjects or in 96 controls. Functionally, this mutation alters the ability of tau to promote microtubule assembly. Analysis of soluble tau from different brain regions indicates that the mutation does not affect the ratio of tau isoforms synthesized. Aggregated insoluble tau from subcortical regions was predominantly four‐repeat tau with no or one amino terminal insert (0N4R and 1N4R). Insoluble tau from cortical regions also contained 1N3R tau. Thus, the R5L mutation causes a progressive supranuclear palsy phenotype, presumably by a gain‐of‐function mechanism.


Brain Research | 1990

Regulation of peripherin and neurofilament expression in regenerating rat motor neurons

Carol M. Troy; Nancy A. Muma; Lloyd A. Greene; Donald L. Price; Michael L. Shelanski

Northern blotting, in situ hybridization and immunocytochemistry were used to study the changes in levels of mRNA coding for peripherin and in immunoreactivity of peripherin, a type III neuronal intermediate filament, in rat spinal motor neurons following axotomy of the sciatic nerve. For comparison, parallel studies examined the biology of neurofilament (NF) proteins in this model. The sciatic nerve was crushed at the junction of the L4-L5 spinal nerves. Levels of messenger RNA (mRNA) coding for peripherin in the motor neurons doubled by 4 days postaxotomy and remained elevated for a period of 6 weeks. Within 4-7 days of injury peripherin immunoreactivity increased significantly in cell bodies of motor neurons and remained elevated through 6 weeks. In contrast, no changes were detected in NF-M immunoreactivity over the same time period. By 8 weeks postaxotomy, levels of peripherin mRNA and protein returned to control values. The increases in the expression of peripherin parallel those of beta-tubulin and actin, and these changes are quite different from the alterations in neurofilament mRNA that decrease after axotomy. The contrasting responses of peripherin and NF to nerve injury indicates that each of these intermediate filaments may play distinct roles in nerve growth and regeneration.


Annals of Neurology | 1999

Overexpression of four-repeat Tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer's disease

Christopher B. Chambers; John M. Lee; Juan C. Troncoso; Stephen G. Reich; Nancy A. Muma

Perturbations in the microtubule‐associated protein tau occur in several human neurodegenerative diseases. In Alzheimers disease and progressive supranuclear palsy (PSP), tau proteins assemble into straight and paired helical filaments that form intraneuronal deposits of neurofibrillary tangles (NFTs). The mechanisms underlying the aberrant assembly of tau into NFTs is unknown. To determine whether alterations in the expression of the carboxyl‐terminal variants of tau contribute to NFT formation, we analyzed tau mRNA isoform expression in select regions of control, Alzheimers disease, and PSP brains. In Alzheimers disease, there were no alterations in tau mRNA isoform expression. However, in PSP, the levels of tau mRNA isoforms containing four microtubule binding domains were increased in the brainstem but not the frontal cortex or cerebellum. The brainstem in PSP has extensive NFT pathology, whereas the frontal cortex and cerebellum are relatively spared, suggesting that alterations in tau mRNA isoform expression occur in NFT‐vulnerable regions in this disease. An increase in the four‐repeat tau mRNA may lead to an increase in four‐repeat tau protein isoforms and may contribute to the formation of NFTs in PSP. A similar increase in four‐repeat tau mRNA has been reported for mutations associated with frontotemporal dementia and parkinsonism linked to chromosome 17.


Neuropharmacology | 2000

Estrogen desensitizes 5-HT1A receptors and reduces levels of Gz, Gi1 and Gi3 proteins in the hypothalamus

D. K. Raap; Lydia L. DonCarlos; Francisca Garcia; Nancy A. Muma; William A Wolf; George Battaglia; Louis D. Van de Kar

The present study investigated whether estrogen would desensitize hypothalamic serotonin(1A) (5-HT(1A)) receptors by examining the neuroendocrine response to 8-OH-DPAT, a 5-HT(1A) agonist. Rats were ovariectomized, allowed to recover for 5 days, then given 2 daily injections of estradiol benzoate or vehicle (10 microg/day, s.c.). Twenty-four hours after the second injection, rats were challenged with a sub-maximal dose of 8-OH-DPAT (50 microg/kg, sc) or saline 15 min prior to sacrifice. 8-OH-DPAT produced a significant increase in plasma oxytocin, ACTH and corticosterone levels in ovariectomized rats. While estrogen treatment for 2 days did not alter basal hormone levels, it did significantly reduce the magnitude of oxytocin, ACTH and corticosterone responses to 8-OH-DPAT. The reduction in hormone responses was accompanied by a significant reduction in hypothalamic levels of G(z), G(i1) and G(i3) proteins (by 50%, 30% and 50%, respectively). These findings suggest that a reduction in these G proteins may contribute to the mechanisms underlying estrogen-induced desensitization of 5-HT(1A) receptors. The desensitization of 5-HT(1A) receptors has been suggested to underlie the therapeutic effects of antidepressant 5-HT uptake inhibitors (SSRIs). Thus, the present results suggest that estrogen or estrogen-like substances in combination with SSRIs may prove effective in developing novel therapeutic strategies for neuropsychiatric disorders in women.


Brain Research | 1999

Elevated transglutaminase-induced bonds in PHF tau in Alzheimer's disease.

Maryam A. Norlund; John M. Lee; Gina M. Zainelli; Nancy A. Muma

Transglutaminase-induced epsilon-(gamma-glutamyl)lysine bonds covalently cross-link and polymerize peptides into insoluble high molecular weight protein aggregates resistant to degradation and proteolytic digestion. We investigated the hypothesis that excessive deposition of epsilon-(gamma-glutamyl)lysine bonds is a neuropathological mechanism which induces the polymerization of tau protein into stable aggregates leading to the formation of paired helical filaments (PHFs) which deposit into neurofibrillary tangles in Alzheimers disease (AD) brain. We demonstrate a significant (45%) elevation in epsilon-(gamma-glutamyl)lysine cross-links in AD cortex as compared to control cortex. In vivo, PHF tau, and high and medium molecular weight neurofilament proteins have significantly greater cross-linking by epsilon-(gamma-glutamyl)lysine bonds in AD brains as compared to controls. The cross-linking of PHF tau occurs both intra-molecularly and inter-molecularly. The inter-molecular cross-linking of tau could account for the formation of high molecular weight tau polymers. These results suggest that transglutaminase-induced cross-linking of tau protein could play a role in the formation and stabilization of neurofibrillary tangles. Inhibition of transglutaminase-induced cross-linking may therefore, provide a novel strategy for the treatment of AD.


Neurochemistry International | 2002

Transglutaminase bonds in neurofibrillary tangles and paired helical filament tau early in Alzheimer's disease

Steven M Singer; Gina M. Zainelli; Maryam A. Norlund; John M. Lee; Nancy A. Muma

Transglutaminase-catalyzed epsilon(gamma-glutamyl)lysine cross-links exist in Alzheimers disease (AD) paired helical filament (PHF) tau protein but not normal soluble tau. To test the hypothesis that these cross-links could play a role in the formation of neurofibrillary tangles (NFT), we used single- and double-label immunofluorescence confocal microscopy and immunoaffinity purification and immunoblotting to examine epsilon(gamma-glutamyl)lysine cross-links in AD and control brains. The number of neurons that are immunoreactive with an antibody directed at the epsilon-(gamma-glutamyl)lysine bond was significantly higher in AD cortex compared with age-matched controls and schizophrenics. PHF tau-directed antibodies AT8, MC-1 and PHF-1 co-localized with epsilon(gamma-glutamyl)lysine immunolabeling in AD NFT. Immunoaffinity purification and immunoblotting experiments demonstrated that PHF tau contains epsilon(gamma-glutamyl)lysine bonds in parietal and frontal cortex in AD. In control cases with NFT present in the entorhinal cortex and hippocampus, indicative of Braak and Braak stage II, epsilon(gamma-glutamyl)lysine bonds were present in PHF tau in parietal and frontal cortex, despite the lack of microscopically detectable NFT or senile plaques in these cortical regions. The presence of PHF tau with epsilon(gamma-glutamyl)lysine bonds in brain regions devoid of NFT in stage II (but regions, which would be expected to contain NFT in stage III) suggests that these bonds occur early in the formation of NFT.


Experimental Neurology | 1990

Alterations in levels of mRNAs coding for neurofilament protein subunits during regeneration.

Nancy A. Muma; Paul N. Hoffman; Hilda H. Slunt; Michael D. Applegate; Ivan Lieberburg; Donald L. Price

Animal models of neuronal injury can be used to explore mechanisms that regulate the expression of genes coding for cytoskeletal proteins and transmitter-related markers. In the present study, in situ hybridization was used to measure levels of messenger ribonucleic acid (mRNA) encoding each of the neurofilament subunits and beta-tubulin in spinal motor neurons at intervals (4 to 56 days) following a unilateral crush of the sciatic nerve. Levels of beta-tubulin mRNA increased (approximately twofold), peaked at 28 days postaxotomy, and returned to control values by 56 days postaxotomy. In contrast, levels of mRNA encoding neurofilament subunits were reduced and returned to control values at 56 days following the lesion. There were significant differences among relative levels of mRNAs coding for each subunit. Other studies have demonstrated that the ratio of pulse-labeled neurofilament subunits in motor axons remained unaltered during regeneration. Therefore, the ratios of neurofilament subunits in axons must be regulated at one of the steps that intervenes between the control of levels of mRNA and the anterograde axonal transport of assembled neurofilaments.


The Journal of Neuroscience | 2002

Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI.

Yahong Zhang; Katerina J. Damjanoska; Gonzalo A. Carrasco; Bertalan Dudas; Deborah N. D'Souza; Julie E. Tetzlaff; Francisca Garcia; Nicole R. Sullivan Hanley; Kumar Scripathirathan; Brett R. Petersen; Thackery S. Gray; George Battaglia; Nancy A. Muma; Louis D. Van de Kar

The present study determined whether the serotonin2A (5-HT2A) receptors in the hypothalamic paraventricular nucleus mediate the neuroendocrine responses to a peripheral injection of the 5-HT2A/2Creceptor agonist (−)DOI [(−)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane]. The 5-HT2A receptor antagonist MDL100,907 ((±)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol), the 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline), or vehicle were microinjected bilaterally through a chronically implanted double-barreled cannula into the hypothalamic paraventricular nucleus 15 min before a peripheral injection of (−)DOI in conscious rats. (−)DOI significantly elevated plasma levels of oxytocin, prolactin, ACTH, corticosterone, and renin. Neither the 5-HT2A receptor antagonist nor the 5-HT2Creceptor antagonist, injected alone, altered the basal levels of these hormones. MDL100,907 (0.748, 7.48, and 18.7 nmol) dose dependently inhibited the (−)DOI-induced increase in all of the hormones except corticosterone. In contrast, SB-242084 (10 nmol) did not inhibit (−)DOI-increased hormone levels. To confirm the presence of 5-HT2A receptors in the hypothalamic paraventricular nucleus, 5-HT2A receptors were mapped using immunohistochemistry. Densely labeled magnocellular neurons were observed throughout the anterior and posterior magnocellular subdivisions of the hypothalamic paraventricular nucleus. Moderately to densely labeled cells were also observed in parvicellular regions. Thus, it is likely that 5-HT2A receptors are present on neuroendocrine cells in the hypothalamic paraventricular nucleus. These data provide the first direct evidence that neuroendocrine responses to a peripheral injection of (−)DOI are predominantly mediated by activation of 5-HT2A receptors in the hypothalamic paraventricular nucleus.


Neuroscience | 2009

Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus

H. Xu; S. Qin; Gonzalo A. Carrasco; Ying Dai; Edward J. Filardo; Eric R. Prossnitz; George Battaglia; Lydia L. DonCarlos; Nancy A. Muma

Selective serotonin reuptake inhibitors (SSRIs), such as Prozac, are used to treat mood disorders. SSRIs attenuate (i.e. desensitize) serotonin 1A (5-HT(1A)) receptor signaling, as demonstrated in rats through decreased release of oxytocin and adrenocorticotropin hormone (ACTH) following 5-HT(1A) receptor stimulation. Maximal therapeutic effects of SSRIs for treatment of mood disorders, as well as effects on hypothalamic 5-HT(1A) receptor signaling in animals, take 1 to 2 weeks to develop. Estradiol also attenuates 5-HT(1A) receptor signaling, but, in rats, these effects occur within 2 days; thus, estrogens or selective estrogen receptor modulators may serve as useful short-term tools to accelerate desensitization of 5-HT(1A) receptors in response to SSRIs if candidate estrogen receptor targets in the hypothalamus are identified. We found high levels of GPR30, which has been identified recently as a pertussis-toxin (PTX) sensitive G-protein-coupled estrogen receptor, in the hypothalamic paraventricular nucleus (PVN) of rats. Double-label immunohistochemistry revealed that GPR30 co-localizes with 5-HT(1A) receptors, corticotrophin releasing factor (CRF) and oxytocin in neurons in the PVN. Pretreatment with PTX to the PVN before peripheral injections of 17-beta-estradiol 3-benzoate completely prevented the reduction of the oxytocin response to the 5-HT(1A) receptor agonist, (+)-8-hydroxy-2-dipropylaminotetralin (DPAT). Treatment with the selective GRP30 agonist, G-1, attenuated 5-HT(1A) receptor signaling in the PVN as measured by an attenuated oxytocin (by 29%) and ACTH (by 31%) response to DPAT. This study indicates that a putative extra-nuclear estrogen receptor, GPR30, may play a role in estradiol-mediated attenuation of 5-HT(1A) receptor signaling, and potentially in accelerating the effects of SSRIs in treatment of mood disorders.


Molecular Brain Research | 1988

Aluminum neurotoxicity altered expression of cytoskeletal genes

Nancy A. Muma; Juan C. Troncoso; Paul N. Hoffman; Edward H. Koo; Donald L. Price

To better understand perturbations of the neuronal cytoskeleton that occur in several mammalian disorders, we have focused on an animal model in which neurofibrillary pathology follows the administration of aluminum salts. In susceptible species, the injection of aluminum produces accumulations of neurofilaments (NFs) in cell bodies and proximal axons of certain populations of neurons. Mechanisms involved in the production of these abnormalities are unclear; in particular, the role of gene expression in the genesis of this type of neurofibrillary pathology has not been examined. In this study of aluminum-intoxicated rabbits, the expression of genes coding for several cytoskeletal proteins was studied in the spinal cord and dorsal root ganglia (DRG)--tissues with and without neurofibrillary pathology, respectively. In aluminum-treated rabbits, in situ hybridization using a cDNA probe demonstrated the presence of mRNA coding for the 68-kDa NF (NF-L) protein in spinal cord motor neurons with NF accumulations as well in unaffected neurons. On Northern blots, the expression of genes coding for the NF-L protein and tubulin was reduced by approximately 3.5-fold and 3-fold, respectively, in spinal cords of aluminum-intoxicated rabbits as compared to controls. On blots, levels of actin mRNA were not significantly different in spinal cords of aluminum-treated rabbits as compared to controls, but there was a trend for a slight reduction. In DRG of intoxicated animals, the expression of genes coding for these cytoskeletal proteins was not altered.

Collaboration


Dive into the Nancy A. Muma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Lee

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar

Yahong Zhang

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. K. Raap

Loyola University Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge