Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy B. Dise is active.

Publication


Featured researches published by Nancy B. Dise.


Journal of Geophysical Research | 1993

Environmental Factors Controlling Methane Emissions from Peatlands in Northern Minnesota

Nancy B. Dise; Eville Gorham; Elon S. Verry

Controls on methane emission from peatlands in northern Minnesota were investigated by correlation to environmental variables and by field manipulation. From September 1988 through September 1990, methane flux measurements were made at weekly to monthly intervals at six sites in the Marcell Experimental Forest, northern Minnesota (two open bog sites, two forested bog sites, a poor fen, and a fen lagg). Flux was related to water table position and peat temperature with simple correlations at individual sites and multiple regression on all sites together. The effect of water table was also investigated experimentally in “bog corrals” (open-ended metal enclosures set in the peat) in which water table was artificially raised to the surface in the driest peatland. Temperature largely controlled variation in flux within individual ecosystems at Marcell, but hydrology distinguished between-site variation. Water table position, peat temperature, and degree of peat humification explained 91% of the variance in log CH4 flux, predicted annual methane emission from individual wetlands successfully, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased emission by 2.5x and 2.2x, respectively. Just as expanding the scale of investigation from a single habitat in a wetland to several wetlands necessitates incorporation of additional variables to explain flux (water table, peat characteristics), modeling flux from several wetland regions, if possible, will require the addition of climate parameters.


Environmental Pollution | 2010

Nitrogen deposition threatens species richness of grasslands across Europe.

Carly J. Stevens; Cecilia Dupré; Edu Dorland; Cassandre Gaudnik; David J. Gowing; Albert Bleeker; Martin Diekmann; Didier Alard; Roland Bobbink; D. Fowler; Emmanuel Corcket; J. Owen Mountford; Vigdis Vandvik; Per Arild Aarrestad; Serge Muller; Nancy B. Dise

Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2-44 kg N ha(-1) yr(-1)) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range.


Philosophical Transactions of the Royal Society B | 2013

Consequences of human modification of the global nitrogen cycle

Jan Willem Erisman; James N. Galloway; Sybil P. Seitzinger; Albert Bleeker; Nancy B. Dise; A. M. Roxana Petrescu; Allison M. Leach; Wim de Vries

The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the ‘nitrogen cascade’: a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.


Water Air and Soil Pollution | 1998

Synthesis of Nitrogen Pools and Fluxes from European Forest Ecosystems

Nancy B. Dise; Egbert Matzner; Per Gundersen

To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3-) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one years data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4+ in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.


Environmental Pollution | 1998

Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe

Nancy B. Dise; Egbert Matzner; Martin Forsius

We evaluate the relationship between the carbon-to-nitrogen ratio (C:N) of the soil organic horizon and nitrate leaching in runoff or seepage water from 33 conifer forests across Europe. The sites span a geographical range covering 11 countries from Ireland to western Russia and Finland to the southern Alps, and encompass a wide range in throughfall nitrogen deposition. The aim of the study is to evaluate the hypothesis that the C:N ratio of the organic (OH) horizon can be used to estimate the level of leaching of nitrate from a forest ecosystem. The analysis suggests that C:N ratio can be an indicator of nitrate leaching for conifer forests across Europe if these ecosystems are grouped into broad categories of throughfall nitrogen deposition. At low levels of N deposition ( 20 kg N ha−1 year−1) N deposition, nitrate leaching increases with decreasing C:N ratio. In addition, for any given value of C:N, the level of nitrate leaching is higher at high N-deposition sites than at intermediate N-deposition sites. From the current data, OH horizon C:N ratio can give a reasonable estimate of the annual export flux of nitrate (95% confidence interval ca ±5 kg N ha−1 year−1) for sites receiving throughfall-N up to about 30 kg N ha−1 year−1. Above this level, the variability in the data increases, suggesting other factors may need consideration to refine estimates of nitrate leaching.


Global Change Biology | 2014

A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

Merritt R. Turetsky; Agnieszka Kotowska; Jill L. Bubier; Nancy B. Dise; Patrick M. Crill; Ed R.C. Hornibrook; Kari Minkkinen; Tim R. Moore; Isla H. Myers-Smith; Hannu Nykänen; David Olefeldt; Janne Rinne; Sanna Saarnio; Narasinha J. Shurpali; Eeva-Stiina Tuittila; J. Michael Waddington; Jeffrey R. White; Kimberly P. Wickland; Martin Wilmking

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.


Global Biogeochemical Cycles | 2002

Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

Vincent Gauci; Nancy B. Dise; D. Fowler

The effect of acid rain SO42− deposition on peatland CH4 emissions was examined by manipulating SO42− inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha−1 yr−1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m−2 from the controls and (in order of increasing SO42− dose size) 10.7, 13.2, and 9.8 g m−2 from the three SO42− treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42− at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42− from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Impact of nitrogen deposition at the species level

Richard J. Payne; Nancy B. Dise; Carly J. Stevens; David J. Gowing

In Europe and, increasingly, the rest of the world, the key policy tool for the control of air pollution is the critical load, a level of pollution below which there are no known significant harmful effects on the environment. Critical loads are used to map sensitive regions and habitats, permit individual polluting activities, and frame international negotiations on transboundary air pollution. Despite their fundamental importance in environmental science and policy, there has been no systematic attempt to verify a critical load with field survey data. Here, we use a large dataset of European grasslands along a gradient of nitrogen (N) deposition to show statistically significant declines in the abundance of species from the lowest level of N deposition at which it is possible to identify a change. Approximately 60% of species change points occur at or below the range of the currently established critical load. If this result is found more widely, the underlying principle of no harm in pollution policy may need to be modified to one of informed decisions on how much harm is acceptable. Our results highlight the importance of protecting currently unpolluted areas from new pollution sources, because we cannot rule out ecological impacts from even relatively small increases in reactive N deposition.


Environmental Pollution | 2009

Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates

Carly J. Stevens; Nancy B. Dise; David J. Gowing

The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the worlds most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.


Science of The Total Environment | 2010

A spatial and seasonal assessment of river water chemistry across North West England

James J. Rothwell; Nancy B. Dise; Kevin G. Taylor; Tim Allott; Paul Scholefield; Helen N. Davies; Colin Neal

This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality.

Collaboration


Dive into the Nancy B. Dise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon J.M. Caporn

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Bobbink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Albert Bleeker

Energy Research Centre of the Netherlands

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Field

Manchester Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge