Nancy Dowe
National Renewable Energy Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy Dowe.
Bioresource Technology | 2004
Daniel J. Schell; Cynthia Riley; Nancy Dowe; Jody Farmer; Kelly N. Ibsen; Mark Ruth; Susan T. Toon; Robert E. Lumpkin
Interest in bioethanol production from lignocellulosic feedstocks for use as an alternative fuel is increasing, but near-term commercialization will require a low cost feedstock. One such feedstock, corn fiber, was tested in the US Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) bioethanol pilot plant for the purpose of testing integrated equipment operation and generating performance data. During initial runs in 1995, the plant was operated for two runs lasting 10 and 15 days each and utilized unit operations for feedstock handling, pretreatment by dilute sulfuric-acid hydrolysis, yeast inoculum production, and simultaneous saccharification and fermentation using a commercially available cellulase enzyme. Although significant operational problems were encountered, as would be expected with the startup of any new plant, operating experience was gained and preliminary data were generated on corn fiber pretreatment and subsequent fermentation of the pretreated material. Bacterial contamination was a significant problem during these fermentations.
Biotechnology Advances | 2014
Qiang Fei; Michael Guarnieri; Ling Tao; Lieve M.L. Laurens; Nancy Dowe; Philip T. Pienkos
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.
Biotechnology Progress | 2010
David Humbird; Ali Mohagheghi; Nancy Dowe; Daniel J. Schell
In process integration studies of the biomass‐to‐ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end‐product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.
Scientific Reports | 2016
Calvin A. Henard; Holly Smith; Nancy Dowe; Marina G. Kalyuzhnaya; Philip T. Pienkos; Michael Guarnieri
Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.
Biotechnology for Biofuels | 2012
Ling Tao; Xiaowen Chen; Andy Aden; Eric Kuhn; Michael E. Himmel; Melvin P. Tucker; Mary Ann Franden; Min Zhang; David K. Johnson; Nancy Dowe; Richard T. Elander
BackgroundOur companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper.ResultsThe cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP) of the control cases were
Bioresource Technology | 2016
Davinia Salvachúa; Holly Smith; Peter C. St. John; Ali Mohagheghi; Darren J. Peterson; Brenna A. Black; Nancy Dowe; Gregg T. Beckham
0.41-
Biotechnology for Biofuels | 2014
Ali Mohagheghi; Jeff Linger; Holly Smith; Shihui Yang; Nancy Dowe; Philip T. Pienkos
0.77 higher than the
Biotechnology for Biofuels | 2015
Ali Mohagheghi; Jeffrey G. Linger; Shihui Yang; Holly Smith; Nancy Dowe; Min Zhang; Philip T. Pienkos
2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by
Bioresource Technology | 2016
Daniel J. Schell; Nancy Dowe; Alexandre Chapeaux; Robert Nelson; Edward W. Jennings
0.23-
Methods of Molecular Biology | 2009
Nancy Dowe
0.30/gallon. Combing both steps could lower the MESP further by