Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy E. Levinger is active.

Publication


Featured researches published by Nancy E. Levinger.


Reviews in Analytical Chemistry | 2010

Analysis of Water in Confined Geometries and at Interfaces

M. D. Fayer; Nancy E. Levinger

The properties of water depend on its extended hydrogen bond network and the continual picosecond-time scale structural evolution of the network. Water molecules in confined environments with pools a few nanometers in diameter or at interfaces undergo hydrogen bond structural dynamics that differ drastically from the dynamics they undergo in bulk water. Orientational motions of water require hydrogen bond network rearrangement. Therefore, observations of orientational relaxation in nanoscopic water systems provide information about the influence of confinement and interfaces on hydrogen bond dynamics. Ultrafast infrared polarization- and wavelength-selective pump-probe experiments can measure the orientational relaxation of water and distinguish water at an interface from water removed from an interface. These experiments can be applied to water in reverse micelles (spherical nanopools). The results provide quantitative determination of the dynamics of water as a function of the size and nature of the confining structure.


Annual Review of Physical Chemistry | 2009

Ultrafast Dynamics in Reverse Micelles

Nancy E. Levinger; Laura A. Swafford

Recent advances in ultrafast laser technology have spurred investigations of microheterogeneous solutions. In particular, researchers have explored details of reverse micelles (RMs), which present isolated droplets of polar solvent sequestered from a continuous nonpolar phase by a surfactant layer. This review explores recent studies utilizing a variety of ultrafast laser techniques to uncover details about structure and dynamics in various RMs. Using ultrafast vibrational spectroscopy, researchers have probed hydrogen-bond dynamics and vibrational energy relaxation in RMs. These studies have developed our understanding of reverse micellar structure, identifying varying water environments in the RMs. In a plethora of experiments employing probe molecules, researchers have explored the confined environment presented by RMs and their impact on a range of chemical reactions. These studies have shown that confinement, rather than the specific interactions with surfactants, is an important factor determining the impact of the reverse micellar environment on the chemistry.


Journal of Chemical Physics | 2004

Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations

Michael R. Harpham; Branka M. Ladanyi; Nancy E. Levinger; Kenneth W. Herwig

Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.


Current Opinion in Colloid and Interface Science | 2000

Ultrafast dynamics in reverse micelles, microemulsions, and vesicles

Nancy E. Levinger

Recently techniques of solvation dynamics have been applied to reverse micelles, microemulsions and vesicular systems. The dynamical data obtained provides a complement to steady-state experiments and builds an understanding of the details of these systems. Recent molecular dynamics simulations show the power of combined experiments and simulations.


Journal of Chemical Physics | 1998

Influence of restricted environment and ionic interactions on water solvation dynamics

Debi D. Pant; Ruth E. Riter; Nancy E. Levinger

Polar solvation dynamics of water sequestered inside Aerosol OT (AOT) reverse micelles have been investigated as a function of the surfactant countercation, specifically replacing Na+ for K+ and Ca2+. For Ca-AOT reverse micelles, the solvation dynamics for the smallest micelles probed occurs on a subnanosecond time scale. The K-AOT reverse micelles display an additional ultrafast component that is attributable to bulklike water motion. As previously reported for Na-AOT reverse micelles [Riter, Willard, and Levinger, J. Phys. Chem. B 102, 2705 (1998)], solvent mobility increases with increasing micellar size for both Ca-AOT and K-AOT reverse micelles. The solvation dynamics in strongly ionic aqueous solutions of Ca2+ and K+ have also been investigated. The 10 M electrolyte solutions display water motion on significantly shorter time scales with substantial ultrafast components. These results show that the micellar interfacial structure plays a significant role in immobilizing intramicellar water and that s...


Accounts of Chemical Research | 2012

The conundrum of pH in water nanodroplets: sensing pH in reverse micelle water pools.

Debbie C. Crans; Nancy E. Levinger

In aqueous environments, acidity is arguably the most important property dictating the chemical, physical, and biological processes that can occur. However, in a variety of environments where the minuscule size limits the number of water molecules, the conventional macroscopic description of pH is no longer valid. This situation arises for any and all nanoscopically confined water including cavities in minerals, porous solids, zeolites, atmospheric aerosols, enzyme active sites, membrane channels, and biological cells and organelles. To understand pH in these confined spaces, we have explored reverse micelles as a model system that confines water to nanoscale droplets. At the appropriate concentrations, reverse micelles form in ternary or higher order solutions of nonpolar solvent, polar solvent (usually water), and amphipathic molecules, usually surfactants or lipids. Measuring the acidity, or local density of protons, commonly known as pH, of these nanoscopic water pools in reverse micelles is challenging. First, because the volume of the water in these reverse micelles is so minute, we cannot probe its proton concentration using traditional pH meters. Second, the traditional concept of pH breaks down in a nanosystem that includes fewer than 10(7) water molecules. Third, the interpretation of results from studies attempting to measure acidity or pH in these environments is nontrivial because the conditions fall outside the accepted IUPAC definition for pH. Researchers have developed experimental methods to measure acidity indirectly using various spectroscopic probe molecules. Most measurements of intramicellar pH have employed optical spectroscopy of organic probe molecules containing at least one labile proton coupled to electronic transitions to track pH changes in the environment. These indirect measurements of the pH reflect the local environment sensed by the probe and are complicated by the probe location within the sample and how that location affects properties such as pK(a). Thus, interpretation of the measurement in the highly heterogeneous reverse micellar environment can be challenging. Organic pH probes can often produce ambiguous acidity measurements, because the probes can readily associate with or penetrate the micellar interface. Protonation can also dramatically change the polarity of the probe and shift the probes location within the system. As a result, researchers have developed highly charged pH-sensitive probes such as hydroxypyrene trisulfonate, vanadate or phosphate that reside in the water pool both before and after protonation. For inorganic probes researchers have used multinuclear NMR spectroscopy to directly measure conditions in the water droplet. Regardless of the probe and method employed, reverse micellar studies include many implicit assumptions. All reported pH measurements comprise averages of molecular ensembles rather than the response of a single molecule. Experiments also represent averages of the dynamic reverse micelles over the time of the experiments. Thus the experiments report results from an average molecular position, pK(a), ionic strength, viscosity, etc. Although the exact meaning of pH in nanosized waterpools challenges scientific intuition and experimental data are non-trivial to interpret, continued experimental studies are critical to improve understanding of these nanoscopic water pools. Experimental data will allow theorists the tools to develop the models that further explore the meaning of pH in nanosized environments.


Journal of Chemical Physics | 2002

Dynamics of polar solvation in acetonitrile–benzene binary mixtures: Role of dipolar and quadrupolar contributions to solvation

B. M. Luther; Joel R. Kimmel; Nancy E. Levinger

While dynamics of polar solvation have been tabulated for a wide range of pure polar solvents, substantially less is known about the dynamic response of solvent mixtures. Here, results for polar solvation dynamics are presented for the nonassociating mixture of a dipolar solvent, acetonitrile, and a quadrupolar solvent, benzene. The solvation response observed is sensitive to the mixing of the pure solvents, affecting both the inertial and diffusive components of the solvation response function. Addition of acetonitrile to benzene increases the amplitude of the inertial response. At high benzene mole fractions, the diffusive relaxation reveals a slow component attributed to translational diffusion of the acetonitrile.


Journal of the American Chemical Society | 2009

Water dynamics and interactions in water-polyether binary mixtures.

Emily E. Fenn; David E. Moilanen; Nancy E. Levinger; M. D. Fayer

Poly(ethylene) oxide (PEO) is a technologically important polymer with a wide range of applications including ion-exchange membranes, protein crystallization, and medical devices. PEOs versatility arises from its special interactions with water. Water molecules may form hydrogen-bond bridges between the ether oxygens of the backbone. While steady-state measurements and theoretical studies of PEOs interactions with water abound, experiments measuring dynamic observables are quite sparse. A major question is the nature of the interactions of water with the ether oxygens as opposed to the highly hydrophilic PEO terminal hydroxyls. Here, we examine a wide range of mixtures of water and tetraethylene glycol dimethyl ether (TEGDE), a methyl-terminated derivative of PEO with 4 repeat units (5 ether oxygens), using ultrafast infrared polarization selective pump-probe measurements on waters hydroxyl stretching mode to determine vibrational relaxation and orientational relaxation dynamics. The experiments focus on the dynamical interactions of water with the ether backbone because TEGDE does not have the PEO terminal hydroxyls. The experiments observe two distinct subensembles of water molecules: those that are hydrogen bonded to other waters and those that are associated with TEGDE molecules. The water orientational relaxation has a fast component of a few picoseconds (water-like) followed by much slower decay of approximately 20 ps (TEGDE associated). The two decay times vary only mildly with the water concentration. The two subensembles are evident even in very low water content samples, indicating pooling of water molecules. Structural change as water content is lowered through either conformational changes in the backbone or increasing hydrophobic interactions is discussed.


Chemistry: A European Journal | 2011

Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

R. Darío Falcone; Bharat Baruah; Ernestas Gaidamauskas; Christopher D. Rithner; N. Mariano Correa; Juana J. Silber; Debbie C. Crans; Nancy E. Levinger

Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.


Langmuir | 2008

1H NMR Studies of Aerosol-OT Reverse Micelles with Alkali and Magnesium Counterions: Preparation and Analysis of MAOTs

Michelle L. Stahla; Bharat Baruah; Dustin M. James; Michael D. Johnson; Nancy E. Levinger; Debbie C. Crans

Simple procedures and characterization of a series of well-defined precursors are described for preparation of a unique microenvironment in nanoreactors, reverse micelles. The Na(+), K(+), Rb(+), Cs(+), and Mg(2+) surfactants were prepared using liquid-liquid ion exchange using chloride and nitrate salts. The surfactants were characterized using (1)H NMR spectroscopy and a variety of other techniques. (1)H NMR spectroscopy was found to be a sensitive probe for characterization of the size of the nanoreactor as well as its water content. (1)H NMR spectra can be used for detailed characterization of reactions in confined environments when counterion effects are likely to be important. (1)H NMR spectroscopy revealed two separate peaks corresponding to water in Mg(AOT)2 samples; one peak arises from water coordinated to the Mg(2+) ion while the other peak arises from bulk water. The two water signals arise directly from the slow exchange of the water coordinated to Mg(2+) in these microemulsions with water in the water pool, and provide an opportunity to study hydration of Mg(2+). This work thus extends the potential use of MAOT microemulsions for applications such as in green chemistry.

Collaboration


Dive into the Nancy E. Levinger's collaboration.

Top Co-Authors

Avatar

Debbie C. Crans

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Bharat Baruah

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale M. Willard

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

B. M. Luther

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debi D. Pant

Birla Institute of Technology and Science

View shared research outputs
Top Co-Authors

Avatar

Michael R. Harpham

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge