Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy Garbacki is active.

Publication


Featured researches published by Nancy Garbacki.


Journal of Ethnopharmacology | 2002

Isolation and pharmacological activity of phenylpropanoid esters from Marrubium vulgare

Sevser Sahpaz; Nancy Garbacki; Monique Tits; François Bailleul

The isolation and identification of major phenylpropanoid esters from Marrubium vulgare: (+) (E)-caffeoyl-L-malic acid 1, acteoside 2, forsythoside B 3, arenarioside 4, ballotetroside 5, as well as their anti-inflammatory activity are reported for the first time. We evaluated the inhibitory effects of these five compounds on cyclooxygenase (Cox) catalysed prostaglandin biosynthesis activity. Only the glycosidic phenylpropanoid esters showed an inhibitory activity towards the Cox-2 enzyme and three of them: acteoside 2, forsythoside B 3, arenarioside 4, exhibited higher inhibitory potencies on Cox-2 than on Cox-1. These results are of interest, as Cox-2 is mainly associated with inflammation and the Cox-1 inhibition with adverse side effects often observed with non-steroidal anti-inflammatory drugs. The occurrence of these phenylpropanoid esters could also explain some other pharmacological properties of M. vulgare.


PLOS ONE | 2011

MicroRNAs Profiling in Murine Models of Acute and Chronic Asthma: A Relationship with mRNAs Targets

Nancy Garbacki; Emmanuel Di Valentin; Vân Anh Huynh-Thu; Pierre Geurts; Alexandre Irrthum; Céline Crahay; Thierry Arnould; Christophe Deroanne; Jacques Piette; Didier Cataldo; Alain Colige

Background miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. Methodology/Principal Findings In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3′UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. Conclusions/Significance This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.


Biomacromolecules | 2011

Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration.

Victor T. Tchemtchoua; Ganka Atanasova; Abdel Aqil; Patrice Filée; Nancy Garbacki; O. Vanhooteghem; Christophe Deroanne; Agnès Noël; Christine Jérôme; Betty Nusgens; Yves Poumay; Alain Colige

The final goal of the present study was the development of a 3-D chitosan dressing that would shorten the healing time of skin wounds by stimulating migration, invasion, and proliferation of the relevant cutaneous resident cells. Three-dimensional chitosan nanofibrillar scaffolds produced by electrospinning were compared with evaporated films and freeze-dried sponges for their biological properties. The nanofibrillar structure strongly improved cell adhesion and proliferation in vitro. When implanted in mice, the nanofibrillar scaffold was colonized by mesenchymal cells and blood vessels. Accumulation of collagen fibrils was also observed. In contrast, sponges induced a foreign body granuloma. When used as a dressing covering full-thickness skin wounds in mice, chitosan nanofibrils induced a faster regeneration of both the epidermis and dermis compartments. Altogether our data illustrate the critical importance of the nanofibrillar structure of chitosan devices for their full biocompatibility and demonstrate the significant beneficial effect of chitosan as a wound-healing biomaterial.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

New asthma biomarkers: lessons from murine models of acute and chronic asthma

Emmanuel Di Valentin; Céline Crahay; Nancy Garbacki; Benoit Hennuy; Maud Guéders; Agnès Noël; Jean-Michel Foidart; Johan Grooten; Alain Colige; Jacques Piette; Didier Cataldo

Many patients suffering from asthma are not fully controlled by currently available treatments, and some of them display an airway remodeling leading to exaggerated lung function decline. The aim of the present study was to unveil new mediators in asthma to better understand pathophysiology and propose or validate new potential therapeutic targets. A mouse model of asthma mimicking acute or chronic asthma disease was used to select genes undergoing a modulation in both acute and chronic conditions. Mice were exposed to ovalbumin or PBS for 1, 5, and 10 wk [short-, intermediate-, and long-term model (ST, IT, and LT)], and gene expression in the lung was studied using an Affymetrix 430 2.0 genome-wide microarray and further confirmed by RT-PCR and immunohistochemistry for selected targets. We report that 598, 1,406, and 117 genes were upregulated and 490, 153, 321 downregulated at ST, IT, and LT, respectively. Genes related to mucous secretion displayed a progressively amplified expression during the allergen exposure protocol, whereas genes corresponding to growth and differentiation factors, matrix metalloproteinases, and collagens were mainly upregulated at IT. By contrast, genes related to cell division were upregulated at ST and IT and were downregulated at LT. In this study, besides confirming that Arg1, Slc26a4, Ear11, and Mmp12 genes are highly modulated throughout the asthma pathology, we show for the first time that Agr2, Scin, and Cd209e genes are overexpressed throughout the allergen exposure and might therefore be considered as suitable new potential targets for the treatment of asthma.


International Journal of Biological Macromolecules | 2010

Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro

Vincent Dehousse; Nancy Garbacki; Séverine Jaspart; Delphine Castagne; Géraldine Piel; Alain Colige; Brigitte Evrard

Chitosan and trimethylchitosan (TMC)-siRNA nanoparticles were produced by simple complexation technique or by ionic gelation using tripolyphosphate (TPP). The obtained complexes were characterized in terms of physicochemical properties such as size, zeta potential, complexation efficiency and stability. Furthermore, cytotoxicity, cell uptake and transfection efficiency of polyplexes were evaluated in vitro. Under pH condition of cell culture medium, a strong decrease in siRNA condensation efficiency was observed with chitosan nanoparticles. This characteristic resulted in low transfection efficiencies in HEK293 cell line. Formulation of chitosan polyplexes with TPP led to improvement of polyplexes stability but no significant increase in transfection efficiency was observed compared to simple chitosan complexes. By contrast, TMC complexes did not have pH dependency on siRNA complexation. TMC-siRNA nanoparticles were stable in physiological condition. Accordingly, cellular uptake was increased compared to chitosan polyplexes. However, improvement of transfection efficiency was low regarding to cellular uptake of these complexes. Chitosan and TMC complexes present some characteristics favourable for siRNA delivery, such as ability to integrate siRNA into small discrete particles or low toxicity of the complexes. This study also highlights the importance of complexes stability in physiological environment for siRNA transfection purposes.


Biomaterials | 2010

Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery.

Vincent Dehousse; Nancy Garbacki; Alain Colige; Brigitte Evrard

RNA interference-based therapies are dependent on intracellular delivery of siRNA. The release of siRNA from the endosomal compartment may be a rate limiting step in the transfection process. The purpose of this study was to produce pH-responsive nanocarriers made of trimethylchitosan (TMC). To this end, pH-sensitive methacrylic acid (MAA) copolymer was added to TMC-siRNA formulations. Four different TMCs associated or not with MAA were evaluated as siRNA carriers. Nanoparticles were characterized in terms of size, surface charge, morphology and interaction with siRNA. A swelling behaviour due to a decrease in pH was observed and was found to be dependent on MAA content in the complexes. In vitro experiments aimed at evaluating how the capacity of the nanocarriers to transfect siRNA in L929 cells was affected by MAA content. Confocal microscopy experiments showed that fluorescent MAA-containing particles exhibit a different distribution pattern inside the cells comparing to their counterpart without this pH-sensitive polymer. Transfection efficiency was investigated by RhoA mRNA expression inhibition. MAA-TMC-siRNA complexes were able to transfect L929 cells with greater efficiency than corresponding TMC-siRNA complexes. This study gives an insight into the opportunity of pH-sensitive nanocarriers for siRNA delivery. Such formulations may represent an attractive strategy to improve endosomal escape of siRNA.


BMC Pharmacology | 2004

Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenin acute inflammatory reactions induced in rats.

Nancy Garbacki; Monique Tits; Luc Angenot; Jacques Damas

BackgroundThe anti-inflammatory effects of proanthocyanidins (PACs), isolated from blackcurrant (Ribes nigrum L.) leaves, were analysed using carrageenin-induced paw oedema and carrageenin-induced pleurisy in rats.ResultsPretreatment of the animals with PACs (10, 30, 60 and 100 mg/kg, i.p.) reduced paw oedema induced by carrageenin in a dose and time-dependent manner. PACs also inhibited dose-dependently carrageenin-induced pleurisy in rats. They reduced (A) lung injury, (B) pleural exudate formation, (C) polymorphonuclear cell infiltration, (D) pleural exudate levels of TNF-α, IL-1β and CINC-1 but did not affect IL-6 and IL-10 levels. They reduced (E) pleural exudate levels of nitrite/nitrate (NOx). In indomethacin treated rats, the volume of pleural exudate was low, its content in leukocytes and its contents in TNF-α, IL-1β, IL-6 and IL-10 but not in NOx were reduced. These data suggest that the anti-inflammatory properties of PACs are achieved through a different pattern from those of indomethacin.ConclusionThese results suggest that the main mechanism of the anti-inflammatory effect of PACs mainly lies in an interference with the migration of the leukocytes. Moreover, PACs inhibited in vivo nitric oxide release.


Journal of Ethnopharmacology | 1999

Anti-inflammatory and immunological effects of Centaurea cyanus flower-heads

Nancy Garbacki; Vincent Gloaguen; Jacques Damas; Patricia Bodart; Monique Tits; Luc Angenot

Centaurea cyanus flower-heads are used in European phytotherapy for the treatment of minor ocular inflammations. Different pharmacological experiments (inhibition of carrageenan, zymosan and croton oil-induced oedemas, inhibition of plasma haemolytic activity, induction of anaphylatoxin activity) showed that polysaccharides extracted from C. cyanus flower-heads had anti-inflammatory properties and interfered with complement. Moreover, these polysaccharides were found to be mainly composed of galacturonic acid, arabinose, glucose, rhamnose and galactose.


Journal of Inflammation | 2005

Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1

Nancy Garbacki; Marie Kinet; Betty Nusgens; Daniel Desmecht; Jacques Damas

BackgroundThe effects of proanthocyanidins (PACs), isolated from blackcurrant (Ribes nigrum L.) leaves, on neutrophil accumulation during inflammatory processes were investigated in vivo and in vitro.MethodsIn vivo studies were performed using carrageenin-induced pleurisy in rats pre-treated with PACs. Exudate volume and PMNs accumulation were measured. Leukocyte cell adhesion molecules (LFA-1, Mac-1 and VLA-4) mobilization in circulating granulocytes were analysed by flow cytometry and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were detected by immunohistochemistry on lung sections.In vitro studies were conducted on endothelial LT2 cells, stimulated with TNF-α, to evaluate ICAM-1, IL-8 and VEGF mRNA expression upon PACs treatment.Data sets were examined by one-way analysis of variance (ANOVA) followed by a Scheffe post-hoc test.ResultsPretreatment of the animals with PACs (10, 30 and 60 mg/kg) inhibited dose-dependently carrageenin-induced pleurisy in rats by reducing pleural exudate formation and PMNs infliltration. Leukocyte cell adhesion molecules mobilization was not down-regulated on granulocytes by PACs. Immunohistochemistry on lung sections showed a decreased production of endothelial cell adhesion molecules.In vitro experiments demonstrated that PACs were able to significantly inhibit ICAM-1 but not IL-8 and VEGF165 mRNA expression. Moreover, VEGF121 mRNA expression was dose-dependently enhanced.ConclusionThis study provides evidence to support the anti-inflammatory activity of proanthocyanidins is related to an inhibition of leukocyte infiltration which can be explained at least in part by a down-regulation of endothelial adhesion molecules, ICAM-1 and VCAM-1 and that these compounds are capable of modulating TNF-α-induced VEGF transcription.


Pulmonary Pharmacology & Therapeutics | 2009

Matrix metalloproteinase 12 silencing: a therapeutic approach to treat pathological lung tissue remodeling?

Nancy Garbacki; Emmanuel Di Valentin; Jacques Piette; Didier Cataldo; Céline Crahay; Alain Colige

Among the large matrix metalloproteinases (MMPs) family, MMP-12, also referred to as macrophage elastase, plays a significant role in chronic pulmonary pathologies characterized by an intense tissue remodeling such as asthma and COPD. This review will summarize knowledge about MMP-12 structure, functions and mechanisms of activation and regulation, including potential MMP-12 modulation by microRNA. As MMP-12 is involved in many tissue remodeling diseases, efforts have been made to develop specific synthetic inhibitors. However, at this time, very few chemical inhibitors have proved to be efficient and specific to a particular MMP. The relevance of silencing MMP-12 by RNA interference is highlighted. The specificity of this approach using siRNA or shRNA and the strategies to deliver these molecules in the lung are discussed.

Collaboration


Dive into the Nancy Garbacki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge