Nancy H. Bigelow
University of Alaska Fairbanks
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy H. Bigelow.
Journal of Geophysical Research | 2003
Jed O. Kaplan; Nancy H. Bigelow; I. C. Prentice; Sandy P. Harrison; Patrick J. Bartlein; Torben R. Christensen; Wolfgang Cramer; Nadya Matveyeva; A. D. McGuire; David F. Murray; Vy Razzhivin; Benjamin Smith; Donald A. Walker; P. M. Anderson; Andrei Andreev; Linda B. Brubaker; Mary E. Edwards; A. V. Lozhkin
Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55degreesN, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to >700 ppm) at high latitudes were slight compared with the effects of the change in climate.
Journal of Geophysical Research | 2003
Nancy H. Bigelow; Linda B. Brubaker; Mary E. Edwards; Sandy P. Harrison; I. Colin Prentice; Patricia M. Anderson; Andrei Andreev; Patrick J. Bartlein; Torben R. Christensen; Wolfgang Cramer; Jed O. Kaplan; A. V. Lozhkin; Nadja V. Matveyeva; David F. Murray; A. David McGuire; Vy Razzhivin; James C. Ritchie; Benjamin Smith; Donald A. Walker; Konrad Gajewski; Victoria Wolf; Björn H. Holmqvist; Yaeko Igarashi; Konstantin Kremenetskii; Aage Paus; Michael F. J. Pisaric; V. S. Volkova
A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55°N at the last glacial maximum (LGM) and mid-Holocene (6000 years B.P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (∼200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (∼200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
Journal of Geophysical Research | 2002
Jason Lynch; James S. Clark; Nancy H. Bigelow; Mary E. Edwards; Bruce P. Finney
Charcoal and pollen analyses were used to determine geographic and temporal patterns of fire importance in boreal forests of the Kenai Peninsula and interior Alaska. Sieved, large charcoal particles were measured in continuously sampled cores of Rock, Portage, and Arrow Lakes (Kenai Peninsula) and Dune and Deuce Lakes (interior Alaska) to estimate regional fire importance and fire occurrence. Charcoal accumulation rates have been low for the past 1000 years in both regions with slightly higher values in interior Alaska than on the Kenai Peninsula. An exception to this general pattern was the period of post-European settlement on the Kenai Peninsula, where charcoal accumulation rates increased by 10-fold. This increase most likely reflected increased fire occurrence due to human ignition. The Holocene charcoal and pollen records from Dune Lake indicate low fire occurrence during the early (9000 to 5500 calibrated year before present (yr BP)) birch-white spruce-alder (Betula-Picea glauca-Alnus) communities and high fire occurrence as black spruce (Picea mariana) became established after 5500 yr BP. Increased fires probably resulted from a change to fire-prone black spruce forests. For the past 5500 yr BP, two distinct fire regimes occurred. Frequent fires, with an average fire return interval of 98 years, characterized the period from 5500-2400 yr BP. Fewer fires, with an average fire interval of 198 years, characterized the period after 2400 yr BP. Fuel accumulation, stand structure, and vegetation species contributed to the natural variability in fire regimes during past changes in climate.
Journal of Geophysical Research | 2003
Nancy H. Bigelow; Linda B. Brubaker; Mary E. Edwards; Sp Harrison; I. C. Prentice; P. M. Anderson; Andrei Andreev; Patrick J. Bartlein; Torben R. Christensen; Wolfgang Cramer; Jed O. Kaplan; A. V. Lozhkin; Nadya Matveyeva; David F. Murray; A. D. McGuire; Vy Razzhivin; J. C. Ritchie; Benjamin Smith; Donald A. Walker; Konrad Gajewski; V Wolf; Björn H. Holmqvist; Yaeko Igarashi; K Kremenetskii; Aage Paus; Mfj Pisaric; V. S. Volkova
A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55°N at the last glacial maximum (LGM) and mid-Holocene (6000 years B.P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (∼200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (∼200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
Molecular Ecology | 2012
Tine Jørgensen; James Haile; Per Möller; Andrei Andreev; Sanne Boessenkool; Morten Rasmussen; Frank Kienast; Eric Coissac; Pierre Taberlet; Christian Brochmann; Nancy H. Bigelow; Khenrik Sune Andersen; Ludovic Orlando; Mpt Gilbert
Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46–12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra‐steppe, pioneer and wet‐indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice‐age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.
Ecoscience | 1995
Daniel H. Mann; Christopher L. Fastie; Erika L. Rowland; Nancy H. Bigelow
A long-standing paradigm in the ecology of the Alaskan taiga states that black spruce (Picea mariana [Mill.] BSP) replaces white spruce (Picea glauca [Moench] Voss) after several centuries of prima...
Quaternary Research | 1990
Nancy H. Bigelow; James E. Beget; Roger Powers
Abstract A brief increase in wind intensity between ca. 11,100 and 10,700 yr B.P. is recorded by a sharp increase in sediment grain size at eolian sections along the Nenana River in central Alaska. This occurred at the same time as the Younger Dryas climatic reversal in northern Europe and an increase in the vigor of atmospheric circulation recorded by Greenland ice cores. Climatic fluctuations in high latitude areas during Younger Dryas time may reflect variations in the CO2 content of the atmosphere.
Journal of Paleolimnology | 2000
Mary E. Edwards; Nancy H. Bigelow; Bruce P. Finney; Wendy R. Eisner
We investigated whether techniques developed to evaluate qualitative lake-level changes in the temperate zone can be used in sub-arctic and arctic Alaska. We focused on aquatic pollen records and sediment properties (loss-on-ignition and magnetic susceptibility) from centrally-located sediment-surface samples and cores, as these are the most commonly reported data in the literature. Modern aquatic pollen values are generally low (< 5%) and may be zero, even in lakes with abundant aquatic macrophytes. Greater diversity and higher values of aquatic pollen are likely at depths < 5 m, but pollen is found in depths up to 15 m. It is absent at depths > 20 m. Spores of Isoetes and Equisetum and Pediastrum cell-nets, when present, tend to be widely distributed, even in deep water. At Birch Lake, interior Alaska, trends in aquatic taxa and sediment characteristics for the last ca. 12,000 14C yrs recorded in a single, deep-water core reflect the same water-level changes as do transect-based lake-level reconstructions - if modern distributional characteristics of pollen and spores are taken into account. The lake rose from extremely low levels at ca. 12,000 14C yr B.P. After a period of fluctuation, it rose to a relatively high level by ca. 8000 14C yr B.P. and then stabilized. A preliminary survey of aquatic pollen trends from other lake-sediment records suggests that the period ca. 11,000-8000 14C yr B.P. may have seen relatively low lake levels in north-western and interior Alaska and high levels thereafter. Changes in aquatic pollen and sediments are evident in north-eastern interior lakes at the same time, but they are more difficult to interpret. Aquatic pollen productivity in Alaskan lakes may partly depend on factors other than water depth (e.g. temperature, pH, nutrient status, or length of the ice-free season). An Alaska-wide reconstruction of late-Quaternary lake levels based on extant single-core data would be best done after further study of contributing factors that may control sediment properties and aquatic pollen distribution.
Evolutionary Anthropology | 2016
John F. Hoffecker; Scott A. Elias; Dennis H. O'Rourke; G. Richard Scott; Nancy H. Bigelow
Until recently, the settlement of the Americas seemed largely divorced from the out‐of‐Africa dispersal of anatomically modern humans, which began at least 50,000 years ago. Native Americans were thought to represent a small subset of the Eurasian population that migrated to the Western Hemisphere less than 15,000 years ago. Archeological discoveries since 2000 reveal, however, that Homo sapiens occupied the high‐latitude region between Northeast Asia and northwest North America (that is, Beringia) before 30,000 years ago and the Last Glacial Maximum (LGM). The settlement of Beringia now appears to have been part of modern human dispersal in northern Eurasia. A 2007 model, the Beringian Standstill Hypothesis, which is based on analysis of mitochondrial DNA (mtDNA) in living people, derives Native Americans from a population that occupied Beringia during the LGM. The model suggests a parallel between ancestral Native Americans and modern human populations that retreated to refugia in other parts of the world during the arid LGM. It is supported by evidence of comparatively mild climates and rich biota in south‐central Beringia at this time (30,000‐15,000 years ago). These and other developments suggest that the settlement of the Americas may be integrated with the global dispersal of modern humans.
Arctic, Antarctic, and Alpine Research | 2003
Mary E. Edwards; Thomas D. Hamilton; Scott A. Elias; Nancy H. Bigelow; Andrea P. Krumhardt
Abstract Numerous exposures of Pleistocene sediments occur in the Noatak basin, which extends for 130 km along the Noatak River in northwestern Alaska. Nk-37, an extensive bluff exposure near the west end of the basin, contains a record of at least three glacial advances separated by interglacial and interstadial deposits. An ancient river-cut bluff and associated debris apron is exposed in profile through the central part of Nk-37. The debris apron contains a rich biotic record and represents part of an interglaciation that is probably assignable to marine-isotope stage 5. Pollen spectra from the lower part of the debris apron closely resemble modern samples taken from the Noatak floodplain in spruce gallery forest, and macrofossils of spruce are also present at this level. Fossil bark beetles and carpenter ants occur higher in the debris apron. Mutual Climatic Range (MCR) estimates from the fossil beetles suggest temperatures similar to or warmer than today. Together, these fossils indicate the presence of an interglacial spruce forest in the western part of the Noatak Basin, which lies about 80 km upstream of the modern limit of spruce forest.