Nancy Holroyd
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy Holroyd.
Genome Research | 2008
Timothy P. Stinear; Torsten Seemann; Paul F. Harrison; Grant A. Jenkin; John K. Davies; Paul D. R. Johnson; Zahra Abdellah; Claire Arrowsmith; Tracey Chillingworth; Carol Churcher; Kay Clarke; Ann Cronin; Paul Davis; Ian Goodhead; Nancy Holroyd; Kay Jagels; Angela Lord; Sharon Moule; Karen Mungall; Halina Norbertczak; Michael A. Quail; Ester Rabbinowitsch; Danielle Walker; Brian R. White; Sally Whitehead; Pamela L. C. Small; Roland Brosch; Lalita Ramakrishnan; Michael A. Fischbach; Julian Parkhill
Mycobacterium marinum, a ubiquitous pathogen of fish and amphibia, is a near relative of Mycobacterium tuberculosis, the etiologic agent of tuberculosis in humans. The genome of the M strain of M. marinum comprises a 6,636,827-bp circular chromosome with 5424 CDS, 10 prophages, and a 23-kb mercury-resistance plasmid. Prominent features are the very large number of genes (57) encoding polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) and the most extensive repertoire yet reported of the mycobacteria-restricted PE and PPE proteins, and related-ESX secretion systems. Some of the NRPS genes comprise a novel family and seem to have been acquired horizontally. M. marinum is used widely as a model organism to study M. tuberculosis pathogenesis, and genome comparisons confirmed the close genetic relationship between these two species, as they share 3000 orthologs with an average amino acid identity of 85%. Comparisons with the more distantly related Mycobacterium avium subspecies paratuberculosis and Mycobacterium smegmatis reveal how an ancestral generalist mycobacterium evolved into M. tuberculosis and M. marinum. M. tuberculosis has undergone genome downsizing and extensive lateral gene transfer to become a specialized pathogen of humans and other primates without retaining an environmental niche. M. marinum has maintained a large genome so as to retain the capacity for environmental survival while becoming a broad host range pathogen that produces disease strikingly similar to M. tuberculosis. The work described herein provides a foundation for using M. marinum to better understand the determinants of pathogenesis of tuberculosis.
Nature | 2013
Isheng J. Tsai; Magdalena Zarowiecki; Nancy Holroyd; Alejandro Garciarrubio; Alejandro Sanchez-Flores; Karen Brooks; Alan Tracey; Raúl J. Bobes; Gladis Fragoso; Edda Sciutto; Martin Aslett; Helen Beasley; Hayley M. Bennett; Jianping Cai; Federico Camicia; Richard M. Clark; Marcela Cucher; Nishadi De Silva; Tim A. Day; Peter Deplazes; Karel Estrada; Cecilia Fernández; Peter W. H. Holland; Junling Hou; Songnian Hu; Thomas Huckvale; Stacy S. Hung; Laura Kamenetzky; Jacqueline A. Keane; Ferenc Kiss
Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
Journal of Bacteriology | 2009
Matthew T. G. Holden; Helena M. B. Seth-Smith; Lisa Crossman; Mohammed Sebaihia; Stephen D. Bentley; Ana Cerdeño-Tárraga; Nicholas R. Thomson; Nathalie Bason; Michael A. Quail; Sarah Sharp; Inna Cherevach; Carol Churcher; Ian Goodhead; Heidi Hauser; Nancy Holroyd; Karen Mungall; P. D. Scott; Danielle Walker; Brian R. White; Helen Rose; Pernille Iversen; Dalila Mil-Homens; Eduardo P. C. Rocha; Arsenio M. Fialho; Adam Baldwin; Christopher G. Dowson; Bart Barrell; John R. W. Govan; Peter Vandamme; C. Anthony Hart
Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.
PLOS Neglected Tropical Diseases | 2012
Anna V. Protasio; Isheng J. Tsai; A. K. Babbage; Sarah Nichol; Martin Hunt; Martin Aslett; Nishadi De Silva; Giles S. Velarde; Timothy J. C. Anderson; Richard Clark; Claire Davidson; Gary P. Dillon; Nancy Holroyd; Philip T. LoVerde; Christine Lloyd; Jacquelline McQuillan; Guilherme Oliveira; Thomas D. Otto; Sophia J. Parker-Manuel; Michael A. Quail; R. Alan Wilson; Adhemar Zerlotini; David W. Dunne; Matthew Berriman
Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasites life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research.
PLOS Pathogens | 2009
Matthew T. G. Holden; Zoe Heather; R. Paillot; Karen F. Steward; K. Webb; Fern Ainslie; Thibaud Jourdan; Nathalie Bason; Nancy Holroyd; Karen Mungall; Michael A. Quail; Mandy Sanders; Mark Simmonds; David Willey; Karen Brooks; David M. Aanensen; Brian G. Spratt; Keith A. Jolley; Martin C. J. Maiden; Michael A. Kehoe; N. Chanter; Stephen D. Bentley; Carl Robinson; Duncan J. Maskell; Julian Parkhill; Andrew S. Waller
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.
PLOS Genetics | 2007
Stephen D. Bentley; George Vernikos; Lori A. S. Snyder; Carol Churcher; Claire Arrowsmith; Tracey Chillingworth; Ann Cronin; Paul H. Davis; Nancy Holroyd; Kay Jagels; Mark Maddison; Sharon Moule; Ester Rabbinowitsch; Sarah Sharp; Louise Unwin; Sally Whitehead; Michael A. Quail; Mark Achtman; Bart Barrell; Nigel J. Saunders; Julian Parkhill
The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus.
Genome Biology | 2013
Roz Laing; Taisei Kikuchi; Axel Martinelli; Isheng J. Tsai; Robin N. Beech; Elizabeth Redman; Nancy Holroyd; David J. Bartley; Helen Beasley; Collette Britton; David M. Curran; Eileen Devaney; Aude Gilabert; Martin Hunt; Frank Jackson; Stephanie L Johnston; Ivan Kryukov; Keyu Li; Alison A. Morrison; Adam J. Reid; Neil Sargison; Gary Ian Saunders; James D. Wasmuth; Adrian J. Wolstenholme; Matthew Berriman; John S. Gilleard; James A. Cotton
BackgroundThe small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.ResultsHere we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.ConclusionsThe H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
Genome Biology | 2014
James A. Cotton; Catherine J. Lilley; Laura M. Jones; Taisei Kikuchi; Adam J. Reid; Peter Thorpe; Isheng J. Tsai; Helen Beasley; Vivian C. Blok; Peter J. A. Cock; Sebastian Eves-van den Akker; Nancy Holroyd; Martin Hunt; Sophie Mantelin; Hardeep Naghra; Arnab Pain; Juan E. Palomares-Rius; Magdalena Zarowiecki; Matthew Berriman; John T. Jones; Peter E. Urwin
BackgroundGlobodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security.ResultsWe present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control.ConclusionsThe data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
PLOS Pathogens | 2006
Katelyn Fenn; Claire Conlon; Martin Jones; Michael A. Quail; Nancy Holroyd; Julian Parkhill; Mark Blaxter
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.
Nature Genetics | 2014
Bernardo J. Foth; Isheng J. Tsai; Adam J. Reid; Allison J. Bancroft; Sarah Nichol; Alan Tracey; Nancy Holroyd; James A. Cotton; Eleanor Stanley; Magdalena Zarowiecki; Jimmy Z. Liu; Thomas Huckvale; Philip J Cooper; Richard K. Grencis; Matthew Berriman
Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage–specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.