Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy M. Hollingsworth is active.

Publication


Featured researches published by Nancy M. Hollingsworth.


Nature | 2004

DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1

Grzegorz Ira; Achille Pellicioli; Alitukiriza Balijja; Xuan Wang; Simona Fiorani; Walter Carotenuto; Giordano Liberi; Debra A. Bressan; Lihong Wan; Nancy M. Hollingsworth; James E. Haber; Marco Foiani

A single double-strand break (DSB) induced by HO endonuclease triggers both repair by homologous recombination and activation of the Mec1-dependent DNA damage checkpoint in budding yeast. Here we report that DNA damage checkpoint activation by a DSB requires the cyclin-dependent kinase CDK1 (Cdc28) in budding yeast. CDK1 is also required for DSB-induced homologous recombination at any cell cycle stage. Inhibition of homologous recombination by using an analogue-sensitive CDK1 protein results in a compensatory increase in non-homologous end joining. CDK1 is required for efficient 5′ to 3′ resection of DSB ends and for the recruitment of both the single-stranded DNA-binding complex, RPA, and the Rad51 recombination protein. In contrast, Mre11 protein, part of the MRX complex, accumulates at unresected DSB ends. CDK1 is not required when the DNA damage checkpoint is initiated by lesions that are processed by nucleotide excision repair. Maintenance of the DSB-induced checkpoint requires continuing CDK1 activity that ensures continuing end resection. CDK1 is also important for a later step in homologous recombination, after strand invasion and before the initiation of new DNA synthesis.


Science Signaling | 2010

Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs

Janine Mok; Philip M. Kim; Hugo Y. K. Lam; Stacy Piccirillo; Xiuqiong Zhou; Grace R. Jeschke; Douglas L. Sheridan; Sirlester A. Parker; Ved Desai; Miri Jwa; Elisabetta Cameroni; Hengyao Niu; Matthew C. Good; Attila Reményi; Jia Lin Nianhan Ma; Yi Jun Sheu; Holly E. Sassi; Richelle Sopko; Clarence S.M. Chan; Claudio De Virgilio; Nancy M. Hollingsworth; Wendell A. Lim; David F. Stern; Bruce Stillman; Brenda Andrews; Mark Gerstein; Michael Snyder; Benjamin E. Turk

A high-throughput peptide array approach reveals insight into kinase substrates and specificity. Exploring Kinase Selectivity Kinases are master regulators of cellular behavior. Because of the large number of kinases and the even larger number of substrates, approaches that permit global analysis are valuable tools for investigating kinase biology. Mok et al. identified the phosphorylation site selectivity for 61 of the 122 kinases in Saccharomyces cerevisiae by screening a miniaturized peptide library. By integrating these data with other data sets and structural information, they revealed information about the relationship between kinase catalytic residues and substrate selectivity. They also identified and experimentally verified substrates for kinases, including one for which limited functional information was previously available, showing the potential for this type of analysis as a launching point for the exploration of the biological functions of kinases. Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisiae. By correlating these motifs with kinase primary sequence, we uncovered previously unappreciated rules for determining specificity within the kinase family, including a residue determining P−3 arginine specificity among members of the CMGC [CDK (cyclin-dependent kinase), MAPK (mitogen-activated protein kinase), GSK (glycogen synthase kinase), and CDK-like] group of kinases. Furthermore, computational scanning of the yeast proteome enabled the prediction of thousands of new kinase-substrate relationships. We experimentally verified several candidate substrates of the Prk1 family of kinases in vitro and in vivo and identified a protein substrate of the kinase Vhs1. Together, these results elucidate how kinase catalytic domains recognize their phosphorylation targets and suggest general avenues for the identification of previously unknown kinase substrates across eukaryotes.


Molecular and Cellular Biology | 2000

Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p.

Dana Woltering; Bridget Baumgartner; Sandipan Bagchi; Brittany Larkin; Josef Loidl; Teresa de los Santos; Nancy M. Hollingsworth

ABSTRACT In yeast, HOP1 and RED1 are required during meiosis for proper chromosome segregation and the consequent formation of viable spores. Mutations in either HOP1 orRED1 create unique as well as overlapping phenotypes, indicating that the two proteins act alone as well as in concert with each other. To understand which meiotic processes specifically require Red1p-Hop1p hetero-oligomers, a novel genetic screen was used to identify a single-point mutation of RED1,red1-K348E, that separates Hop1p binding from Red1p homo-oligomerization. The Red1-K348E protein is stable, phosphorylated in a manner equivalent to Red1p, and undergoes efficient homo-oligomerization; however, its ability to interact with Hop1p both by two-hybrid and coimmunoprecipitation assays is greatly reduced. Overexpression of HOP1 specifically suppressesred1-K348E, supporting the idea that the only defect in the protein is a reduced affinity for Hop1p. red1-K348E mutants exhibit reduced levels of crossing over and spore viability and fail to undergo chromosome synapsis, thereby implicating a role for Red1p-Hop1p hetero-oligomers in these processes. Furthermore,red1-K348E suppresses the sae2/com1 defects in meiotic progression and sporulation, indicating a previously unknown role for HOP1 in the meiotic recombination checkpoint.


Journal of Biological Chemistry | 1997

Conserved Properties between Functionally Distinct MutS Homologs in Yeast

Pascale Pochart; Dana Woltering; Nancy M. Hollingsworth

In the yeast Saccharomyces cerevisiaethere are five nuclear MutS homologs that act in two distinct processes. MSH2, 3, and 6 function in mismatch repair in both vegetative and meiotic cells, whereasMSH4 and MSH5 act specifically to facilitate crossovers between homologs during meiosis. Coimmunoprecipitation as well as two-hybrid experiments indicate that the Msh4 and Msh5 proteins form a hetero-oligomeric structure similar to what is observed for the Msh proteins involved in mismatch repair. Mutation of conserved amino acids in the NTP binding and putative helix-turn-helix domains of Msh5p abolish function but are still capable of interaction with Msh4p, suggesting that NTP binding plays a role downstream of hetero-oligomer formation. No hetero-oligomers are observed between the mismatch repair MutS proteins (Msh2p and Msh6p) and either Msh4p or Msh5p. These results indicate that one level of functional specificity between the mismatch repair and meiotic crossover MutS homologs in yeast is provided by the ability to form distinct hetero-oligomers.


Molecular Cell | 2009

Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation

Hengyao Niu; Lihong Wan; Valeria Busygina; Youngho Kwon; Jasmina A. Allen; Xue Li; Ryan C. Kunz; Kazuishi Kubota; Beatrice Wang; Patrick Sung; Kevan M. Shokat; Steven P. Gygi; Nancy M. Hollingsworth

A preference for homologs over sister chromatids in homologous recombination is a fundamental difference in meiotic versus mitotic cells. In budding yeast, the bias for interhomolog recombination in meiosis requires the Dmc1 recombinase and the meiosis-specific kinase Mek1, which suppresses engagement of sister chromatids by the mitotic recombinase Rad51. Here, a combination of proteomic, biochemical, and genetic approaches has identified an additional role for Mek1 in inhibiting the activity of the Rad51 recombinase through phosphorylation of its binding partner, Rad54. Rad54 phosphorylation of threonine 132 attenuates complex formation with Rad51, and a negative charge at this position reduces Rad51 function in vitro and in vivo. Thus, Mek1 phosphorylation provides a dynamic means of controlling recombination partner choice in meiosis in two ways: (1) it reduces Rad51 activity through inhibition of Rad51/Rad54 complex formation, and (2) it suppresses Rad51-mediated strand invasion of sister chromatids via a Rad54-independent mechanism.


Journal of Biological Chemistry | 1999

Red1p, a MEK1-dependent Phosphoprotein That Physically Interacts with Hop1p during Meiosis in Yeast

Teresa de los Santos; Nancy M. Hollingsworth

The synaptonemal complex (SC) is a proteinaceous structure formed between pairs of homologous chromosomes during prophase I of meiosis. The proper assembly of axial elements (AEs), lateral components of the SC, during meiosis in the yeast,Saccharomyces cerevisiae, is essential for wild-type levels of recombination and for the accurate segregation of chromosomes at the first meiotic division. Genetic experiments have indicated that the stoichiometry between two meiosis-specific components of AEs inS. cerevisiae, HOP1 and RED1, is critical for proper assembly and function of the SC. A third meiosis-specific gene, MEK1, which encodes a putative serine/threonine protein kinase, is also important for proper AE function, suggesting that AE formation is regulated by phosphorylation. In this paper, we demonstrate that Mek1p is a functional kinasein vitro and that catalytic activity is an essential part of the meiotic function of Mek1 in vivo. Immunoblot analysis revealed that Red1p is aMEK1-dependent phosphoprotein. Co-immunoprecipitation experiments demonstrated that the interaction between Hop1p and Red1p is enhanced by the presence ofMEK1. Thus, MEK1-dependent phosphorylation of Red1p facilitates the formation of Hop1p/Red1p hetero-oligomers, thereby enabling the formation of functional AEs.


Molecular and Cellular Biology | 2007

Mek1 Kinase Is Regulated To Suppress Double-Strand Break Repair between Sister Chromatids during Budding Yeast Meiosis

Hengyao Niu; Xue Li; Emily Job; Caroline Park; Danesh Moazed; Steven P. Gygi; Nancy M. Hollingsworth

ABSTRACT Mek1 is a meiosis-specific kinase in budding yeast which promotes recombination between homologous chromosomes by suppressing double-strand break (DSB) repair between sister chromatids. Previous work has shown that in the absence of the meiosis-specific recombinase gene, DMC1, cells arrest in prophase due to unrepaired DSBs and that Mek1 kinase activity is required in this situation to prevent repair of the breaks using sister chromatids. This work demonstrates that Mek1 is activated in response to DSBs by autophosphorylation of two conserved threonines, T327 and T331, in the Mek1 activation loop. Using a version of Mek1 that can be conditionally dimerized during meiosis, Mek1 function was shown to be promoted by dimerization, perhaps as a way of enabling autophosphorylation of the activation loop in trans. A putative HOP1-dependent dimerization domain within the C terminus of Mek1 has been identified. Dimerization alone, however, is insufficient for activation, as DSBs and Mek1 recruitment to the meiosis-specific chromosomal core protein Red1 are also necessary. Phosphorylation of S320 in the activation loop inhibits sister chromatid repair specifically in dmc1Δ-arrested cells. Ectopic dimerization of Mek1 bypasses the requirement for S320 phosphorylation, suggesting this phosphorylation is necessary for maintenance of Mek1 dimers during checkpoint-induced arrest.


Molecular and Cellular Biology | 1992

Meiotic induction of the yeast HOP1 gene is controlled by positive and negative regulatory sites

A K Vershon; Nancy M. Hollingsworth; Alexander D. Johnson

The process of meiosis and sporulation in the yeast Saccharomyces cerevisiae is a highly regulated developmental pathway dependent on genetic as well as nutritional signals. The HOP1 gene, which encodes a component of meiotic chromosomes, is not expressed in mitotically growing cells, but its transcription is induced shortly after yeast cells enter the meiotic pathway. Through a series of deletions and mutations in the HOP1 promoter, we located two regulatory sites that are essential for proper regulation of HOP1. One site, called URS1H, brings about repression of HOP1 in mitotic cells and functions as an activator sequence in cells undergoing meiosis. The second site, which we designated UASH, acts as an activator sequence in meiotic cells and has similarity to the binding site of the mammalian CCAAT/enhancer binding protein (C/EBP). Both sites are required for full meiotic induction of the HOP1 promoter. We conclude that in mitotic yeast cells, the URS1H site maintains the repressed state of the HOP1 promoter, masking the effect of the UASH site. Upon entry into meiosis, repression is lifted, allowing the URS1H and UASH sites to activate high-level transcription.


Molecular and Cellular Biology | 1998

DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae

K. Mary Kironmai; K. Muniyappa; David B. Friedman; Nancy M. Hollingsworth; Breck Byers

ABSTRACT The meiosis-specific HOP1 gene is important both for crossing over between homologs and for production of viable spores.hop1 diploids fail to assemble synaptonemal complex (SC), which normally provides the framework for meiotic synapsis. Immunochemical methods have shown that the 70-kDa HOP1product is a component of the SC. To assess its molecular function, we have purified Hop1 protein to homogeneity and shown that it forms dimers and higher oligomers in solution. Consistent with the zinc-finger motif in its sequence, the purified protein contained about 1 mol equivalent of zinc whereas mutant protein lacking a conserved cysteine within this motif did not. Electrophoretic gel mobility shift assays with different forms of M13 DNA showed that Hop1 binds more readily to linear duplex DNA and negatively superhelical DNA than to nicked circular duplex DNA and even more weakly to single-stranded DNA. Linear duplex DNA binding was enhanced by the addition of Zn2+, was stronger for longer DNA fragments, and was saturable to about 55 bp/protein monomer. Competitive inhibition of this binding by added oligonucleotides suggests preferential affinity for G-rich sequences and weaker binding to poly(dA-dT). Nuclear extracts of meiotic cells caused exonucleolytic degradation of linear duplex DNA if the extracts were prepared from hop1 mutants; addition of purified Hop1 conferred protection against this degradation. These findings suggest that Hop1 acts in meiotic synapsis by binding to sites of double-strand break formation and helping to mediate their processing in the pathway to meiotic recombination.


Genetics | 2006

Chemical Inactivation of Cdc7 Kinase in Budding Yeast Results in a Reversible Arrest That Allows Efficient Cell Synchronization Prior to Meiotic Recombination

Lihong Wan; Chao Zhang; Kevan M. Shokat; Nancy M. Hollingsworth

Genetic studies in budding yeast have provided many fundamental insights into the specialized cell division of meiosis, including the identification of evolutionarily conserved meiosis-specific genes and an understanding of the molecular basis for recombination. Biochemical studies have lagged behind, however, due to the difficulty in obtaining highly synchronized populations of yeast cells. A chemical genetic approach was used to create a novel conditional allele of the highly conserved protein kinase Cdc7 (cdc7-as3) that enables cells to be synchronized immediately prior to recombination. When Cdc7-as3 is inactivated by addition of inhibitor to sporulation medium, cells undergo a delayed premeiotic S phase, then arrest in prophase before double-strand break (DSB) formation. The arrest is easily reversed by removal of the inhibitor, after which cells rapidly and synchronously proceed through recombination and meiosis I. Using the synchrony resulting from the cdc7-as3 system, DSB-dependent phosphorylation of the meiosis-specific chromosomal core protein, Hop1, was shown to occur after DSBs. The cdc7-as3 mutant therefore provides a valuable tool not only for understanding the role of Cdc7 in meiosis, but also for facilitating biochemical and cytological studies of recombination.

Collaboration


Dive into the Nancy M. Hollingsworth's collaboration.

Top Co-Authors

Avatar

Lihong Wan

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brittany Larkin

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge