Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy Pryer is active.

Publication


Featured researches published by Nancy Pryer.


Nature | 2013

Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance

Meghna Das Thakur; Fernando Salangsang; Allison Landman; William R. Sellers; Nancy Pryer; Mitchell P. Levesque; Reinhard Dummer; Martin McMahon; Darrin Stuart

Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥50% of tumours expressing the BRAF(V600E) oncoprotein. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xenograft models in which drug resistance is selected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E)→MEK→ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations.


Clinical & Experimental Metastasis | 2003

SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model.

Lesley J. Murray; Tinya Abrams; Kelly R. Long; Theresa J. Ngai; Lisa M. Olson; Weiru Hong; Paul K. Keast; Jacqueline A. Brassard; Anne Marie O'Farrell; Julie M. Cherrington; Nancy Pryer

The aim of the study was to investigate inhibitory effects of the receptor tyrosine kinase (RTK) inhibitor SU11248 against CSF-1R and osteoclast (OC) formation. We developed an in vivo model of breast cancer metastasis to evaluate efficacy of SU11248 against tumor growth and tumor-induced osteolysis in bone. The in vitro effects of SU11248 on CSF-1R phosphorylation, OC formation and function were evaluated. Effects on 435/HAL-Luc tumor growth in bone were monitored by in vivo bioluminescence imaging (BLI), and inhibition of osteolysis was evaluated by measurement of serum pyridinoline (PYD) concentration and histology. Phosphorylation of the receptor for M-CSF (CSF-1R) expressed by NIH3T3 cells was inhibited by SU11248 with an IC50 of 50–100 nM, consistent with CSF-1R belonging to the class III split kinase domain RTK family. The early M-CSF-dependent phase of in vitro murine OC development and function were inhibited by SU11248 at 10–100 nM. In vivo inhibition of osteolysis was confirmed by significant lowering of serum PYD levels following SU11248 treatment of tumor-bearing mice (P=0.047). Using BLI, SU11248 treatment at 40 mg/kg/day for 21 days showed 64% inhibition of tumor growth in bone (P=0.006), and at 80 mg/kg/day showed 89% inhibition (P=0.001). Collectively, these data suggest that SU11248 may be an effective and tolerated therapy to inhibit growth of breast cancer bone metastases, with the additional advantage of inhibiting tumor-associated osteolysis.


Nature Medicine | 2015

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response

Hui Gao; Joshua Korn; Stephane Ferretti; John E. Monahan; Youzhen Wang; Mallika Singh; Chao Zhang; Christian Schnell; Guizhi Yang; Yun Zhang; O Alejandro Balbin; Stéphanie Barbe; Hongbo Cai; Fergal Casey; Susmita Chatterjee; Derek Y. Chiang; Shannon Chuai; Shawn M Cogan; Scott D Collins; Ernesta Dammassa; Nicolas Ebel; Millicent Embry; John Green; Audrey Kauffmann; Colleen Kowal; Rebecca J. Leary; Joseph Lehar; Ying Liang; Alice Loo; Edward Lorenzana

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Clinical Cancer Research | 2006

CHIR-258 Is Efficacious in A Newly Developed Fibroblast Growth Factor Receptor 3–Expressing Orthotopic Multiple Myeloma Model in Mice

Xiaohua Xin; Tinya Abrams; Paul Hollenbach; Katherine Rendahl; Yan Tang; Yoko Oei; Millicent Embry; Debbie Swinarski; Evelyn N. Garrett; Nancy Pryer; Suzanne Trudel; Bahija Jallal; Dirk B. Mendel; Carla Heise

Purpose: The ectopically expressed and deregulated fibroblast growth factor receptor 3 (FGFR3) results from a t(4;14) chromosomal translocation that occurs in ∼15% of multiple myeloma (MM) patients and confers a particularly poor prognosis. This study assesses the antimyeloma activity of CHIR-258, a small-molecule inhibitor of multiple receptor tyrosine kinases that is currently in phase I trials, in a newly developed FGFR3-driven preclinical MM animal model. Experimental Design: We developed an orthotopic MM model in mice using a luciferase-expressing human KMS-11-luc line that expresses mutant FGFR3 (Y373C). The antimyeloma activity of CHIR-258 was evaluated at doses that inhibited FGFR3 signaling in vivo in this FGFR3-driven animal model. Results: Noninvasive bioluminescence imaging detected MM lesions in nearly all mice injected with KMS-11-luc cells, which were mainly localized in the spine, skull, and pelvis, resulting in frequent development of paralysis. Daily oral administration of CHIR-258 at doses that inhibited FGFR3 signaling in KMS-11-luc tumors in vivo resulted in a significant inhibition of KMS-11-luc tumor growth, which translated into a significant improvement in animal survival. Conclusions: Our data provide a relevant preclinical basis for clinical trials of CHIR-258 in FGFR3-positive MM patients.


Molecular Cancer Therapeutics | 2007

The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenografts in vivo

Deryk Loo; Nancy Pryer; Peter R. Young; Tony W. Liang; Suzanne Coberly; Kathleen L. King; Key Kang; Penny Roberts; Mary Tsao; Xiaolin Xu; Beverly Potts; Jennie P. Mather

RAV12 is a chimeric antibody that recognizes an N-linked carbohydrate antigen (RAAG12) strongly expressed on multiple solid organ cancers. More than 90% of tumors of colorectal, gastric, and pancreatic origin express RAAG12, and a majority of these tumors exhibit uniform RAAG12 expression. RAV12 exhibits potent cytotoxic activity in vitro against COLO 205 colon tumor cells via an oncotic cell death mechanism. RAV12-treated COLO 205 cells undergo morphologic changes consistent with oncosis, including cytoskeletal rearrangement, rapid plasma membrane swelling, and cell lysis. RAV12 inhibited the growth of RAAG12-expressing gastrointestinal tumor xenografts in athymic mice. In the case of SNU-16 tumor cells, twice weekly treatment of established s.c. tumors with 10 mg/kg RAV12 caused a ∼70% suppression of tumor growth at the end of the study. This preclinical data has led to the initiation of a phase I/IIA clinical study of RAV12 in patients with metastatic or recurrent adenocarcinoma. [Mol Cancer Ther 2007;6(3):856–65]


Molecular Cancer Therapeutics | 2012

The Novel Oral Hsp90 Inhibitor NVP-HSP990 Exhibits Potent and Broad-spectrum Antitumor Activities In Vitro and In Vivo

Daniel Menezes; Pietro Taverna; Michael Rugaard Jensen; Tinya Abrams; Darrin Stuart; Guoying Karen Yu; David Duhl; Timothy Machajewski; William R. Sellers; Nancy Pryer; Zhenhai Gao

A novel oral Hsp90 inhibitor, NVP-HSP990, has been developed and characterized in vitro and in vivo. In vitro, NVP-HSP990 exhibits single digit nanomolar IC50 values on three of the Hsp90 isoforms (Hsp90α, Hsp90β, and GRP94) and 320 nanomolar IC50 value on the fourth (TRAP-1), with selectivity against unrelated enzymes, receptors, and kinases. In c-Met amplified GTL-16 gastric tumor cells, NVP-HSP990 dissociated the Hsp90-p23 complex, depleted client protein c-Met, and induced Hsp70. NVP-HSP990 potently inhibited the growth of human cell lines and primary patient samples from a variety of tumor types. In vivo, NVP-HSP990 exhibits drug-like pharmaceutical and pharmacologic properties with high oral bioavailability. In the GTL-16 xenograft model, a single oral administration of 15 mg/kg of NVP-HSP990 induced sustained downregulation of c-Met and upregulation of Hsp70. In repeat dosing studies, NVP-HSP990 treatment resulted in tumor growth inhibition of GTL-16 and other human tumor xenograft models driven by well-defined oncogenic Hsp90 client proteins. On the basis of its pharmacologic profile and broad-spectrum antitumor activities, clinical trials have been initiated to evaluate NVP-HSP990 in advanced solid tumors. Mol Cancer Ther; 11(3); 730–9. ©2012 AACR.


Cancer Research | 2012

Abstract 3790: Preclinical profile of LGX818: A potent and selective RAF kinase inhibitor

Darrin Stuart; Nanxin Li; Daniel J. Poon; Kimberly Aardalen; Susan Kaufman; Hanne Merritt; Fernando Salangsang; Edward Lorenzana; Allen Li; Majid Ghoddusi; Giordano Caponigro; Frank Sun; Swarupa Kulkarni; Shefali Kakar; Nancy Turner; Richard Zang; John Tellew; Nancy Pryer

Selective RAF inhibitors have significant activity in patients with metastatic melanoma whose tumors express BRAFV600E. However, not all patients respond equally well to treatment and the duration of response is often limited to less than 6 months. LGX818 was developed with the hypothesis that a more potent inhibitor with excellent pharmacological properties would maximize the degree and duration of patient response. LGX818 is a highly potent RAF inhibitor with selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. Contributing to the high potency of LGX818 is the extremely slow off-rate from BRAFV600E which is not observed with other RAF inhibitors. In biochemical assays the dissociation half-life was >24 hours which translated into sustained target inhibition in cells following drug wash-out. Single dose PK/PD studies in human melanoma xenograft models (BRAFV600E) indicated that LGX818 treatment at oral doses as low as 6 mg/kg resulted in strong (75%) and sustained (>24 hours) decrease in phospho-MEK, even following clearance of drug from circulation. Decreases in phospho-ERK were consistent with phospho-MEK but markers of downstream transcriptional output (DUSP6 and SPRY4) appeared to provide a more sensitive measure of pathway activation. LGX818 induced tumor regression in multiple BRAF mutant human tumor xenograft models grown in immune compromised mice and rats at doses as low as 1 mg/kg. Consistent with the in vitro data, LGX818 was inactive against BRAF wild-type tumors at doses up to 300 mg/kg bid, with good tolerability and linear increase in exposure. Efficacy was also achieved in a more disease-relevant spontaneous metastatic melanoma and a model of melanoma brain metastasis. LGX818 is a potent and selective RAF kinase inhibitor with unique biochemical properties that contribute to an excellent pharmacological profile. A Phase I clinical trial in patients with BRAF mutant tumors is ongoing. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3790. doi:1538-7445.AM2012-3790


The Journal of Pathology | 2014

Mouse tumour models to guide drug development and identify resistance mechanisms

Meghna Das Thakur; Nancy Pryer; Mallika Singh

We need improved, translatable and predictive tumour models for the evaluation of response and the evolution of resistance to targeted therapeutics. We provide a review of the use of different types of preclinical tumour models to evaluate novel anticancer agents, and model the rapidly evolving landscape of resistance to targeted therapy. We focus on describing the various preclinical models available for candidate drug development and design considerations for preclinical experiments, depending on the aspect of drug action being interrogated. We discuss selected examples of how experimental findings have translated into clinical outcomes for targeted agents, predicted mechanisms that drive resistance and strategies to overcome the evolution thereof. We discuss challenges in preclinical experimental design and interpretation and possible improvements in animal models of therapeutic response and resistance, with an emphasis on improved translation of experimental research into clinical practice. Copyright


Cancer Research | 2014

Vemurafenib Cooperates with HPV to Promote Initiation of Cutaneous Tumors

Matthew Holderfield; Edward Lorenzana; Ben Weisburd; Lisa Lomovasky; L. Boussemart; Ludovic Lacroix; Gorana Tomasic; Michel Favre; Stephan Vagner; Caroline Robert; Majid Ghoddusi; Dylan Daniel; Nancy Pryer; Frank McCormick; Darrin Stuart

Treatment with RAF inhibitors such as vemurafenib causes the development of cutaneous squamous cell carcinomas (cSCC) or keratoacanthomas as a side effect in 18% to 30% of patients. It is known that RAF inhibitors activate the mitogen-activated protein kinase (MAPK) pathway and stimulate growth of RAS-mutated cells, possibly accounting for up to 60% of cSCC or keratoacanthoma lesions with RAS mutations, but other contributing events are obscure. To identify such events, we evaluated tumors from patients treated with vemurafenib for the presence of human papilloma virus (HPV) DNA and identified 13% to be positive. Using a transgenic murine model of HPV-driven cSCC (K14-HPV16 mice), we conducted a functional test to determine whether administration of RAF inhibitors could promote cSCC in HPV-infected tissues. Vemurafenib treatment elevated MAPK markers and increased cSCC incidence from 22% to 70% in this model. Furthermore, 55% of the cSCCs arising in vemurafenib-treated mice exhibited a wild-type Ras genotype, consistent with the frequency observed in human patients. Our results argue that HPV cooperates with vemurafenib to promote tumorigenesis, in either the presence or absence of RAS mutations.


Journal of Medicinal Chemistry | 2014

Design, structure-activity relationship, and in vivo characterization of the development candidate NVP-HSP990.

Christopher Mcbride; Barry Levine; Yi Xia; Cornelia Bellamacina; Timothy D. Machajewski; Zhenhai Gao; Paul A. Renhowe; William R. Antonios-Mccrea; Paul A. Barsanti; Kristin Brinner; Abran Costales; Brandon M. Doughan; Xiaodong Lin; Alicia Louie; Maureen Mckenna; Kris Mendenhall; Daniel Poon; Alice Rico; Michael Wang; Teresa E. Williams; Tinya Abrams; Susan Fong; Thomas Hendrickson; Dachuan Lei; Julie Lin; Daniel Menezes; Nancy Pryer; Pietro Taverna; Yongjin Xu; Yasheen Zhou

Utilizing structure-based drug design, a novel dihydropyridopyrimidinone series which exhibited potent Hsp90 inhibition, good pharmacokinetics upon oral administration, and an excellent pharmacokinetic/pharmacodynamic relationship in vivo was developed from a commercial hit. The exploration of this series led to the selection of NVP-HSP990 as a development candidate.

Collaboration


Dive into the Nancy Pryer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin McMahon

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge