Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy S. Magnuson is active.

Publication


Featured researches published by Nancy S. Magnuson.


Nature Medicine | 2007

Pim-1 regulates cardiomyocyte survival downstream of Akt

John Muraski; Marcello Rota; Yu Misao; Jenna Fransioli; Christopher T. Cottage; Natalie Gude; Grazia Esposito; Francesca Delucchi; Michael L. Arcarese; Roberto Alvarez; Sailay Siddiqi; Gregory Emmanuel; Weitao Wu; Kimberlee Fischer; Joshua J. Martindale; Christopher C. Glembotski; Annarosa Leri; Jan Kajstura; Nancy S. Magnuson; Anton Berns; Remus M Beretta; Steven R. Houser; Erik Schaefer; Piero Anversa; Mark A. Sussman

The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1–deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-XL protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1–overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1–deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.


Biochimica et Biophysica Acta | 2002

Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase.

Zeping Wang; Nandini Bhattacharya; Philip F. Mixter; Wenyi Wei; John M. Sedivy; Nancy S. Magnuson

The serine/threonine kinase, Pim-1, appears to be involved in regulating proliferation, differentiation and cell survival of lymphoid and myeloid cells. In this study, we have found that amino acid residues 140-147 (RKRRQTSM) at the C-terminal end of p21(Cip1/WAF1), a cyclin-dependent kinase (CDK) inhibitor, constitute an ideal phosphorylation consensus sequence for Pim-1. We demonstrate that Pim-1 efficiently phosphorylates this peptide sequence as well as the p21 protein in vitro. We also demonstrate by pull-down assay and by immunoprecipitation that Pim-1 associates with p21. During phorbol ester-induced differentiation of U937 cells, both Pim-1 and p21 expression levels increase with Pim-1 levels increasing in both the nucleus and cytoplasm while p21 remains primarily cytoplasmic. Co-transfection of wild type p21 with wild type Pim-1 results in cytoplasmic localization of p21 while co-transfection of wild type p21 with kinase dead Pim-1 results in nuclear localization of p21. Consistent with the results from the phosphoamino acid assay, Pim-1 phosphorylates transfected p21 only on Thr(145) in p21-deficient human fibroblasts and this phosphorylation event results in the cytoplasmic localization of p21. These findings demonstrate that Pim-1 associates with and phosphorylates p21 in vivo, which influences the subcellular localization of p21.


Oncogene | 2008

Pim kinase-dependent inhibition of c-Myc degradation.

Yandong Zhang; Zeping Wang; Xiaowu Li; Nancy S. Magnuson

Pim kinases are found to be highly expressed in leukemia, lymphoma, prostate and pancreatic cancer. Bitransgenic mice overexpressing either Pim-1 or Pim-2 and c-Myc succumb to pre-B-cell lymphoma at a strikingly accelerated speed. Despite that Pim-1/Pim-2 has long been recognized as a strong synergistic partner with c-Myc in tumorigenesis, the mechanism underlying the synergism is still not well understood. Overexpression of Pim-1/Pim-2 kinase dramatically stabilizes c-Myc in vivo, and the stabilization is partially mediated by phosphorylation of c-Myc by Pim kinase on a novel site, Ser329. We provide evidence that Pim-2 is more efficient in directly phosphorylating c-Myc Ser329 to stabilize c-Myc. In contrast, we find that Pim-1 is more effective in mediating a decrease in c-Myc Thr58 phosphorylation and an increase in c-Myc Ser62 phosphorylation than in phosphorylating Ser329. In either case, through stabilizing c-Myc, Pim-1/Pim-2 kinases enhance the transcriptional activity of c-Myc. Also knocking down either Pim-1 or Pim-2 dramatically decreases the endogenous levels of c-Myc and thus, its transcriptional activity. Finally, coexpression of the Pim kinases and c-Myc enhances the transforming activity of c-Myc as does the phosphomimic mutant of c-Myc on Ser329. We conclude that these findings appear to explain at least in part the mechanism underlying the synergism between the Pim kinases and c-Myc in tumorigenesis.


Journal of Immunology | 2002

CD40 Signaling in B Cells Regulates the Expression of the Pim-1 Kinase Via the NF-κB Pathway

Nongliao Zhu; Luis M. Ramirez; Rosaline L. Lee; Nancy S. Magnuson; Gail A. Bishop; Michael R. Gold

The ability of CD40 signaling to regulate B cell growth, survival, differentiation, and Ig class switching involves many changes in gene expression. Using cDNA expression arrays and Northern blotting, we found that CD40 signaling increased the mRNA levels for pim-1, a protooncogene that encodes a serine/threonine protein kinase. Subsequent experiments showed that CD40 engagement also increased both Pim-1 protein levels and Pim-1 kinase activity in B cells. We then investigated the signaling pathways by which CD40 regulates Pim-1 expression and found that CD40 up-regulates Pim-1 primarily via the activation of NF-κB. Inhibiting the activation of NF-κB, either by treating cells with a chemical inhibitor, BAY11-7082, or by inducibly expressing a superrepressor form of IκBα, significantly impaired the ability of CD40 to increase Pim-1 protein levels. Because Pim-1 expression is associated with cell proliferation and survival, we asked whether this correlated with the ability of CD40 signaling to prevent anti-IgM-induced growth arrest in the WEHI-231 murine B cell line, a model for Ag-induced clonal deletion. We found that the anti-IgM-induced growth arrest in WEHI-231 cells correlated with a substantial decrease in Pim-1 levels. In contrast, culturing WEHI-231 cells with either anti-CD40 Abs or with the B cell mitogen LPS, both of which prevent the anti-IgM-induced growth arrest, also prevented the rapid decline in Pim-1 levels. This suggests that Pim-1 could regulate the survival and proliferation of B cells.


Molecular Cancer Research | 2007

Pim-1 Kinase-Dependent Phosphorylation of p21Cip1/WAF1 Regulates Its Stability and Cellular Localization in H1299 Cells

Yandong Zhang; Zeping Wang; Nancy S. Magnuson

Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation. (Mol Cancer Res 2007;5(9):909–22)


Molecular Cancer Research | 2005

Pim-1 Kinase Stability Is Regulated by Heat Shock Proteins and the Ubiquitin-Proteasome Pathway

Kate Petersen Shay; Zeping Wang; Pei-Xiang Xing; Ian F.C. McKenzie; Nancy S. Magnuson

Elevated expression of the serine/threonine kinase Pim-1 increases the incidence of lymphomas in Pim-1 transgenic mice and has also been found to occur in some human cancers. Pim-1 acts as a cell survival factor and may prevent apoptosis in malignant cells. It was therefore of interest to understand to what extent maintenance and degradation of Pim-1 protein is affected by heat shock proteins (Hsp) and the ubiquitin-proteasome pathway in K562 and BV173 human leukemic cells. The half-life of Pim-1 protein in these cells was found to increase from 1.7 to 3.1 hours when induced by heat shock or by treating the cells with the proteasome inhibitor PS-341 (bortezomib). The Hsp90 inhibitor geldanamycin prevented the stabilization of Pim-1 by heat shock. Using immunoprecipitation, it was determined that Pim-1 is targeted for degradation by ubiquitin and that Hsp70 is associated with Pim-1 under these circumstances. Conversely, Hsp90 was found to protect Pim-1 from proteasomal degradation. A luminescence-based kinase assay showed that Pim-1 kinase bound to Hsp70 or Hsp90 remains active, emphasizing the importance of its overall cellular levels. This study shows how Pim-1 levels can be modulated in cells through degradation and stabilization.


Journal of Clinical Investigation | 2009

PIM-1–specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis

Xiu Feng Hu; Jie Li; Scott Vandervalk; Zeping Wang; Nancy S. Magnuson; Pei Xiang Xing

Provirus integration site for Moloney murine leukemia virus (PIM1) is a proto-oncogene that encodes a serine/threonine kinase with multiple cellular functions. Overexpression of PIM-1 plays a critical role in progression of prostatic and hematopoietic malignancies. Here we describe the generation of a mAb specific for GST-PIM-1, which reacted strongly with most human and mouse cancer tissues and cell lines of prostate, breast, and colon origin but only weakly (if at all) with normal tissues. The mAb binds to PIM-1 in the cytosol and nucleus as well as to PIM-1 on the surface of human and murine cancer cells. Treatment of human and mouse prostate cancer cell lines with the PIM-1-specific mAb resulted in disruption of PIM-1/Hsp90 complexes, decreased PIM-1 and Hsp90 levels, reduced Akt phosphorylation at Ser473, reduced phosphorylation of Bad at Ser112 and Ser136, and increased cleavage of caspase-9, an indicator of activation of the mitochondrial cell death pathway. The mAb induced cancer cell apoptosis and synergistically enhanced antitumor activity when used in combination with cisplatin and epirubicin. In tumor models, the PIM-1-specific mAb substantially inhibited growth of the human prostate cancer cell line DU145 in SCID mice and the mouse prostate cancer cell TRAMP-C1 in C57BL/6 mice. These findings are important because they provide what we believe to be the first in vivo evidence that treatment of prostate cancer may be possible by targeting PIM-1 using an Ab-based therapy.


Journal of Reproductive Immunology | 1988

Suppression of lymphocyte proliferation by proteins secreted by cultured Sertoli cells

C.R. Wyatt; L. Law; J.A. Magnuson; M.D. Griswold; Nancy S. Magnuson

Secreted proteins from cultured rat Sertoli cells were assessed for effects on phytolectin-stimulated rat splenic lymphocytes. Sertoli cell proteins (SCP) suppressed DNA, RNA and protein synthesis in stimulated rat splenic lymphocytes whether added at 0, 4, 24 and 48 h after culture initiation. SCP preparations were not toxic to cells. SCP suppressive activity was heat stable but was not associated with the carbohydrate component of SCP preparations. SCP also suppressed the proliferation of lymphoid and non-lymphoid cell lines from several different animal species but did not inhibit proliferation-independent lysis of YAC-1 target cells by rat natural killer cells. These results suggest that Sertoli cells synthesize inhibitory factors that might be secreted into seminal plasma. Furthermore, our results demonstrate that one mode of action of these factors is suppression of cell proliferation.


Future Oncology | 2010

Why target PIM1 for cancer diagnosis and treatment

Nancy S. Magnuson; Zeping Wang; Gang Ding; Raymond Reeves

The highly conserved proto-oncogenic protein PIM1 is an unusual serine or threonine kinase, in part because it is constitutively active. Overexpression of PIM1 experimentally leads to tumor formation in mice, while complete knockout of the protein has no observable phenotype. It appears to contribute to cancer development in three major ways when it is overexpressed; by inhibiting apoptosis, by promoting cell proliferation and by promoting genomic instability. Expression in normal tissues is nearly undetectable. However, in hematopoietic malignancies and in a variety of solid tumors, increased PIM1 expression has been shown to correlate with the stage of disease. This characteristic suggests it can serve as a useful biomarker for cancer diagnosis and prognosis. Several specific and potent inhibitors of PIM1’s kinase activity have also been shown to induce apoptotic death of cancer cells, to sensitize cancer cells to chemotherapy and to synergize with other anti-tumor agents, thus making it an attractive therapeutic target.


Oncogene | 2009

PIM1 Phosphorylates and Negatively Regulates ASK1-mediated Apoptosis

Juan Jenny Gu; Zeping Wang; Raymond Reeves; Nancy S. Magnuson

The serine/threonine kinase, PIM1, is involved in promoting cell survival in part by phosphorylation and inhibition of proapoptotic proteins. Apoptosis signaling kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is involved in the so-called stress-activated pathways that contribute to apoptotic cell death. Here we show that PIM1 phosphorylates ASK1 specifically on serine residue 83 (Ser83) both in vitro and in vivo and that PIM1 binds to ASK1 in cells by co-immunoprecipitation. Using H1299 cells, our results further demonstrate that PIM1 phosphorylation of ASK1 decreases its kinase activity induced by oxidative stress. PIM1 phosphorylation of ASK1 on Ser83 inhibited ASK1-mediated c-Jun N-terminal kinase phosphorylation as well as p38 kinase phosphorylation. Under H2O2-induced stress conditions that normally lead to apoptosis, these phosphorylation events were associated with inhibition of caspase-3 activation and resulted in reduced cell death. Moreover, knockdown of PIM1 in H1299 cells decreased phosphorylation of endogenous Ser83 of ASK1 and was associated with a decrease in cell viability after H2O2 treatment. Taken together, these data reveal a novel mechanism by which PIM1 promotes cell survival that involves negative regulation of the stress-activated kinase, ASK1.

Collaboration


Dive into the Nancy S. Magnuson's collaboration.

Top Co-Authors

Avatar

Zeping Wang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Raymond Reeves

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Lance E. Perryman

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Carol R. Wyatt

Washington State University

View shared research outputs
Top Co-Authors

Avatar

James A. Magnuson

Washington State University

View shared research outputs
Top Co-Authors

Avatar

James M. Lee

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Denise Wingett

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Mark A. Sussman

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Yandong Zhang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Charles M. Bue

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge