Nancy Stralis-Pavese
Austrian Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nancy Stralis-Pavese.
Environmental Microbiology | 2008
Yin Chen; Mark G. Dumont; Josh D. Neufeld; Levente Bodrossy; Nancy Stralis-Pavese; Niall P. McNamara; Nick Ostle; Maria J.I. Briones; J. Colin Murrell
Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.
Applied and Environmental Microbiology | 2006
Levente Bodrossy; Nancy Stralis-Pavese; Marianne Konrad-Köszler; Alexandra Weilharter; Thomas G. Reichenauer; David Schöfer; Angela Sessitsch
ABSTRACT A method was developed for the mRNA-based application of microbial diagnostic microarrays to detect active microbial populations. DNA- and mRNA-based analyses of environmental samples were compared and confirmed via quantitative PCR. Results indicated that mRNA-based microarray analyses may provide additional information on the composition and functioning of microbial communities.
Journal of Microbiological Methods | 2002
Angela Sessitsch; Stephen Gyamfi; Nancy Stralis-Pavese; Alexandra Weilharter; Ulrike Pfeifer
The impact of three different RNA isolation methods on the community analysis of metabolically active bacteria was determined by reverse transcription (RT) and PCR amplification of 16S rRNA genes and subsequent terminal restriction fragment length polymorphism (T-RFLP) analysis. Furthermore, soil samples were stored at different conditions in order to evaluate the effect of soil conservation methods on the outcome of the population analysis. The quality of mRNA was assessed by reverse transcription and PCR amplification of eubacterial glutamine synthetase genes. Our results indicated that the community composition as well as the abundance of individual members were affected by the kind of RNA isolation method. Furthermore, the extraction method influenced the recovery of mRNA. Lyophilization, storage at -20 degrees C as well as storage in glycerol stocks at -80 degrees C proved to be equally appropriate for the storage of soils and subsequent RNA isolation.
The ISME Journal | 2008
Marina Héry; Andrew C. Singer; Deepak Kumaresan; Levente Bodrossy; Nancy Stralis-Pavese; James I. Prosser; Ian P. Thompson; J. Colin Murrell
In the United Kingdom, landfills are the primary anthropogenic source of methane emissions. Methanotrophic bacteria present in landfill biocovers can significantly reduce methane emissions via their capacity to oxidize up to 100% of the methane produced. Several biotic and abiotic parameters regulate methane oxidation in soil, such as oxygen, moisture, methane concentration and temperature. Earthworm-mediated bioturbation has been linked to an increase in methanotrophy in a landfill biocover soil (AC Singer et al., unpublished), but the mechanism of this trophic interaction remains unclear. The aims of this study were to determine the composition of the active methanotroph community and to investigate the interactions between earthworms and bacteria in this landfill biocover soil where the methane oxidation activity was significantly increased by the earthworms. Soil microcosms were incubated with 13C-CH4 and with or without earthworms. DNA and RNA were extracted to characterize the soil bacterial communities, with a particular emphasis on methanotroph populations, using phylogenetic (16S ribosomal RNA) and functional methane monooxygenase (pmoA and mmoX) gene probes, coupled with denaturing gradient-gel electrophoresis, clone libraries and pmoA microarray analyses. Stable isotope probing (SIP) using 13C-CH4 substrate allowed us to link microbial function with identity of bacteria via selective recovery of ‘heavy’ 13C-labelled DNA or RNA and to assess the effect of earthworms on the active methanotroph populations. Both types I and II methanotrophs actively oxidized methane in the landfill soil studied. Results suggested that the earthworm-mediated increase in methane oxidation rate in the landfill soil was more likely to be due to the stimulation of bacterial growth or activity than to substantial shifts in the methanotroph community structure. A Bacteroidetes-related bacterium was identified only in the active bacterial community of earthworm-incubated soil but its capacity to actually oxidize methane has to be proven.
Applied and Environmental Microbiology | 2007
Aurélie Cébron; Levente Bodrossy; Nancy Stralis-Pavese; Andrew C. Singer; Ian P. Thompson; James I. Prosser; J. Colin Murrell
ABSTRACT Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in nonamended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.
The ISME Journal | 2011
Tanvir Rahman; Andrew Crombie; Yin Chen; Nancy Stralis-Pavese; Levente Bodrossy; Patrick Meir; Niall P. McNamara; J. Colin Murrell
Methylocella spp. are facultative methanotrophs, which are able to grow not only on methane but also on multicarbon substrates such as acetate, pyruvate or malate. Methylocella spp. were previously thought to be restricted to acidic soils such as peatlands, in which they may have a key role in methane oxidation. There is little information on the abundance and distribution of Methylocella spp. in the environment. New primers were designed, and a real-time quantitative PCR method was developed and validated targeting Methylocella mmoX (encoding the α-subunit of the soluble methane monooxygenase) that allowed the quantification of Methylocella spp. in environmental samples. We also developed and validated specific PCR assays, which target 16S rRNA genes of known Methylocella spp. These were used to investigate the distribution of Methylocella spp. in a variety of environmental samples. It was revealed that Methylocella species are widely distributed in nature and not restricted to acidic environments.
Environmental Microbiology | 2008
Julia Gebert; Nancy Stralis-Pavese; Mashal Alawi; Levente Bodrossy
Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.
Environmental Microbiology Reports | 2009
Guy C.J. Abell; Nancy Stralis-Pavese; Angela Sessitsch; Levente Bodrossy
The role of methane-oxidizing bacteria (MOB) in alpine environments is poorly understood, but is of importance given the abundance of alpine environments and the role of MOB in the global carbon cycle. Using a combination of approaches we examined both seasonal and land usage effects on the ecology of microbial methane oxidation in an alpine meadow soil. Analysis of the abundance and diversity of MOB demonstrated that the abundance and diversity of the dominant type II MOB, predominantly Metylocystis and relatives, was only influenced by season. Conversely type Ia MOB abundance was significantly affected by season and land usage, while diversity changes were effected predominantly by land use. Assessment of methane oxidation potential and soil physical properties demonstrated a strong link between type Ia MOB abundance and methane oxidation potential as well as a complex series of relationships between soil moisture, pH and MOB abundance, changing with season. The results of this study suggest that, while type II MOB, unaffected by land use, represent the dominant MOB, Methylobacter-related type Ia MOB appear to be responsible for the majority of methane oxidation and are strongly affected by the grazing of cattle.
Nature Protocols | 2011
Nancy Stralis-Pavese; Guy C.J. Abell; Angela Sessitsch; Levente Bodrossy
Microbial diagnostic microarrays (MDMs) are highly parallel hybridization platforms containing multiple sets of immobilized oligonucleotide probes used for parallel detection and identification of many different microorganisms in environmental and clinical samples. Each probe is approximately specific to a given group of organisms. Here we describe the protocol used to develop and validate an MDM method for the semiquantification of a range of functional genes—in this case, particulate methane monooxygenase (pmoA)—and we give an example of its application to the study of the community structure of methanotrophs and functionally related bacteria in the environment. The development and validation of an MDM, following this protocol, takes ∼6 months. The pmoA MDM described in detail comprises 199 probes and addresses ∼50 different species-level clades. An experiment comprising 24 samples can be completed, from DNA extraction to data acquisition, within 3 d (12–13 h bench work).
Environmental Microbiology Reports | 2009
Deepak Kumaresan; Guy C.J. Abell; Levente Bodrossy; Nancy Stralis-Pavese; J. Colin Murrell
Methanotrophs present in landfill cover soil can limit methane emissions from landfill sites by oxidizing methane produced in landfill. Understanding the spatial and temporal distribution of populations of methanotrophs and the factors influencing their activity and diversity in landfill cover soil is critical to devise better landfill cover soil management strategies. pmoA-based microarray analyses of methanotroph community structure revealed a temporal shift in methanotroph populations across different seasons. Type II methanotrophs (particularly Methylocystis sp.) were found to be present across all seasons. Minor shifts in type I methanotroph populations were observed. In the case of spatial distribution, only minor differences in methanotroph community structure were observed with no recognizable patterns (both vertical and horizontal) at a 5 m scale. Correlation analysis between soil abiotic parameters (total C, N, NH4 (+) , NO3 (-) and water content) and distribution of methanotrophs revealed a lack of conclusive evidence for any distinct correlation pattern between measured abiotic parameters and methanotroph community structure, suggesting that complex interactions of several physico-chemical parameters shape methanotroph diversity and activity in landfill cover soils.