Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy W. Y. Ho is active.

Publication


Featured researches published by Nancy W. Y. Ho.


Applied Biochemistry and Biotechnology | 2004

Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.

Miroslav Sedlak; Nancy W. Y. Ho

Recent studies have proven ethanol to be the idael liquid fuel for transportation, and renewable ligno cellulosic materials to be the attractive feed stocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from starches and cane sugar cannot metabolize xylose. Our group at Purdue University succeded in developing genetically engineered Saccharomyces yeasts capable of effectively cofermenting glucose and xylose to ethanol, which was accomplished by cloning three xylose-metabolizing genes into the yeast. In this study, we demonstrated that our stable recombinant Sacharomyces yeast, 424A (LNH-ST), which contains the cloned xylose-metabolizing genes stably integrated into the yeast chromosome in high copy numbers, can efficiently ferment glucose and xylose present in hydrolysates from different cellulosic biomass to ethanol.


Applied Biochemistry and Biotechnology | 1993

Cloning and improving the expression of Pichia stipitis xylose reductase gene in saccharomyces cerevisiae

Zhengdao Chen; Nancy W. Y. Ho

The intactPichia stipitis xylose reductase gene (XR) has been cloned and expressed inSaccharomyces cerevisiae. The possible further improvement of the expression of thePichia gene in the new host was studied. To improve the expression of the XR gene in yeast (Saccharomyces cerevisiae), its 5′-noncoding sequence containing the genetic elements for transcription and translation was systematically replaced by that from the yeast genes. It was found that thePichia genetic signal for transcription of XR is more effective than the yeast TRP5 promoter, but is about half as effective as the yeast strong promoter of the alcohol dehydrogenase gene (ADC1). However, the nucleotide sequence immediately adjacent to the initiation codon of XR, which controls the translation of the gene product, seemed to be five times less effective than the corresponding sequence of the ADC1 gene. By totally replacing its 5′-noncoding sequence with that of the yeast ADC1 gene, the expression of XR in yeast was found to be nearly ten times higher. Furthermore, the clonedPichia XR described in this article contains very little of its 3′-noncoding sequence. In order to study whether the 3′-noncoding sequence is important to its expression inS. cerevisiae, the intact 3′-noncoding sequences of the yeast xylulokinase gene was spliced to the 3′ end of thePADC1-XR structural gene. This latter modification has resulted in a twofold further increase in the expression of thePichia XR in yeast.


Yeast | 2004

Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.

Miroslav Sedlak; Nancy W. Y. Ho

We have developed recombinant Saccharomyces yeasts that can effectively co‐ferment glucose and xylose to ethanol. However, these yeasts still ferment glucose more efficiently than xylose. The transport of xylose could be one of the steps limiting the fermentation of xylose. In this study, we characterized the changes in the expression pattern of the hexose transporter and related genes during co‐fermentation of glucose and xylose using one of our recombinant yeasts, Saccharomyces cerevisiae 424A(LNH‐ST). The transcription of the hexose transporter and related genes was strongly influenced by the presence of glucose; HXT1, HXT2 and HXT3 were greatly activated by glucose and HXT5, HXT7 and AGT1 were significantly repressed by glucose. We also examined the effectiveness of individual transporters encoded by HXT1, HXT2, HXT4, HXT5, HXT7 and GAL2 genes for transporting xylose during co‐fermentation of glucose and xylose in a Saccharomyces hxt° mutant (RE700A). We compared these hxt° derivatives to RE700A wild‐type strain (S. cerevisiae MC996A) where all of them contained the same xylose metabolizing genes present in our xylose‐fermenting yeasts such as 424A(LNH‐ST). Our results showed that recombinant RE700A containing the cloned HXT7 or HXT5 were substantially more effective for fermenting xylose to ethanol. In addition, we found that the efficiency of transporters for intracellular accumulation of xylose was as follows: HXT7 > HXT5 > GAL2 > WT > HXT1 > HXT4 > > > RE700A. Furthermore, we provided evidence that the Saccharomyces galactose transporter system could be a highly effective xylose transporter. The information reported here should be of great importance for improving the Saccharomyces yeast transport of xylose. Copyright


Applied Biochemistry and Biotechnology | 2005

Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production

Nathan S. Mosier; Richard Hendrickson; Mark Brewer; Nancy W. Y. Ho; Miroslav Sedlak; Richard Dreshel; Gary Welch; Bruce S. Dien; Andy Aden; Michael R. Ladisch

The pretreatment of cellulose in corn fiber by liquid hot water at 160°C and a pH above 4.0 dissolved 50% of the fiber in 20 min. The pretreatment also enabled the subsequent complete enzymatic hydrolysis of the remaining polysaccharides to monosaccharides. The carbohydrates dissolved by the pretreatment were 80% soluble oligosaccharides and 20% monosaccharides with º1% of the carbohydrates lost to degradation products. Only a minimal amount of protein was dissolved, thus enriching the protein content of the un dissolved material. Replication of laboratory results in an industrial trial at 43 gallons per minute (163 L/min) of fiber slurry with a residence time of 20 min illustrates the utility and practicality of this approach for pretreating corn fiber. The added costs owing to pretreatment, fiber, and hydrolysis are equivalent to less than


Biochemical and Biophysical Research Communications | 2002

Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells

Daniel Sliva; C.A. Labarrere; Veronika Slivova; Miroslav Sedlak; Frank P. Lloyd; Nancy W. Y. Ho

0.84/gal of ethanol produced from the fiber. Minimizing monosaccharide formation during pretreatment minimized the formation of degradation products; hence, the resulting sugars were readily fermentable to ethanol by the recombinant hexose and by pentose-fermenting Saccharomyces cerevisiae 424A (LNH-ST) and ethanologenic Escherichia coli at yields >90% of theoretical based on the starting fiber. this cooperative effort and first successful trial opens the door for examining the robustness of the pretreatment system under extended run conditions as well as pretreatment of other cellulose-containing materials using water at controlled pH.


Fems Yeast Research | 2010

Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae

Elizabeth Casey; Miroslav Sedlak; Nancy W. Y. Ho; Nathan S. Mosier

A dried powder from basidiomycetous fungi, Ganoderma lucidum, has been used in East Asia in therapies for several different diseases, including cancer. However, the molecular mechanisms involved in the biological actions of Ganoderma are not well understood. We have recently demonstrated that phosphatidylinositol 3-kinase (PI 3-kinase) and nuclear factor-kappaB (NF-kappaB) regulate motility of highly invasive human breast cancer cells by the secretion of urokinase-type plasminogen activator (uPA). In this study, we investigated the effect of G. lucidum on highly invasive breast and prostate cancer cells. Here we show that spores or dried fruiting body of G. lucidum inhibit constitutively active transcription factors AP-1 and NF-kappaB in breast MDA-MB-231 and prostate PC-3 cancer cells. Furthermore, Ganoderma inhibition of expression of uPA and uPA receptor (uPAR), as well secretion of uPA, resulted in the suppression of the migration of MDA-MB-231 and PC-3 cells. Our data suggest that spores and unpurified fruiting body of G. lucidum inhibit invasion of breast and prostate cancer cells by a common mechanism and could have potential therapeutic use for cancer treatment.


Advances in Biochemical Engineering \/ Biotechnology | 1999

Successful Design and Development of Genetically Engineered Saccharomyces Yeasts for Effective Cofermentation of Glucose and Xylose from Cellulosic Biomass to Fuel Ethanol

Nancy W. Y. Ho; Zhengdao Chen; Adam P. Brainard; Miroslav Sedlak

A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.


Applied Biochemistry and Biotechnology | 1990

Xylulokinase activity in various yeasts includingSaccharomyces cerevisiae containing the cloned xylulokinase gene

Xue Xing Deng; Nancy W. Y. Ho

Ethanol is an effective, environmentally friendly, nonfossil, transportation biofuel that produces far less pollution than gasoline. Furthermore, ethanol can be produced from plentiful, domestically available, renewable, cellulosic biomass. However, cellulosic biomass contains two major sugars, glucose and xylose, and a major obstacle in this process is that Saccharomyces yeasts, traditionally used and still the only microorganisms currently used for large scale industrial production of ethanol from glucose, are unable to ferment xylose to ethanol. This makes the use of these safest, most effective Saccharomyces yeasts for conversion of biomass to ethanol economically unfeasible. Since 1980, scientists worldwide have actively been trying to develop genetically engineered Saccharomyces yeasts to ferment xylose. In 1993, we achieved a historic breakthrough to succeed in the development of the first genetically engineered Saccharomyces yeasts that can effectively ferment both glucose and xylose to ethanol. This was accomplished by carefully redesigning the yeast metabolic pathway for fermenting xylose to ethanol, including cloning three xylose-metabolizing genes, modifying the genetic systems controlling gene expression, changing the dynamics of the carbon flow, etc. As a result, our recombinant yeasts not only can effectively ferment both glucose and xylose to ethanol when these sugars are present separately in the medium, but also can effectively coferment both glucose and xylose present in the same medium simultaneously to ethanol. This has made it possible because we have genetically engineered the Saccharomyces yeasts as such that they are able to overcome some of the natural barrier present in all microorganisms, such as the synthesis of the xylose metabolizing enzymes not to be affected by the presence of glucose and by the absence of xylose in the medium. This first generation of genetically engineered glucose-xylose-cofermenting Saccharomyces yeasts relies on the presence of a high-copy-number 2 mu-based plasmid that contains the three cloned genetically modified xylose-metabolizing genes to provide the xylose-metabolizing capability. In 1995, we achieved another breakthrough by creating the super-stable genetically engineered glucose-xylose-cofermenting Saccharomyces yeasts which contain multiple copies of the same three xylose-metabolizing genes stably integrated on the yeast chromosome. This is another critical development which has made it possible for the genetically engineered yeasts to be effective for cofermenting glucose and xylose by continuous fermentation. It is widely believed that the successful development of the stable glucose-xylose-cofermenting Saccharomyces yeasts has made the biomass-to-ethanol technology a step much closer to commercialization. In this paper, we present an overview of our rationales and strategies as well as our methods and approaches that led to the ingenious design and successful development of our genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose to biofuel ethanol.


Applied Biochemistry and Biotechnology | 1999

Fermentation Kinetics of Ethanol Production from Glucose and Xylose by Recombinant Saccharomyces 1400(pLNH33)

Mahesh S. Krishnan; Nancy W. Y. Ho; George T. Tsao

Abstractd-Xylose is a major constituent of hemicellulose, which makes up 20–30% of renewable biomass in nature.d-Xylose can be fermented by most yeasts, includingSaccharomyces cerevisiae, by a two-stage process. In this process, xylose is first converted to xylulose in vitro by the enzyme xylose (glucose) isomerase, and the latter sugar is then fermented by yeast to ethanol. With the availability of an inexpensive source of xylose isomerase produced by recombinantE. coli, this process of fermenting xylose to ethanol can become quite effective. In this paper, we report that yeast xylose and xylulose fermentation can be further improved by cloning and overexpression of the xylulokinase gene. For instance, the level of xylulokinase activity in S.cerevisiae can be increased 230fold by cloning its xylulokinase gene on a high copy-number plasmid, coupled with fusion of the gene with an effective promoter. The resulting genetically-engineered yeasts can ferment xylose and xylulose more than twice as fast as the parent yeast.


World Journal of Microbiology & Biotechnology | 1997

Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain

Mohammed Moniruzzaman; Bruce S. Dien; Christopher D. Skory; Z.D. Chen; R.B. Hespell; Nancy W. Y. Ho; Bruce E. Dale; R.J. Bothast

Fermentation kinetics of ethanol production from glucose, xylose, and their mixtures using a recombinant Saccharomyces 1400(pLNH33) are reported. Single-substrate kinetics indicate that the specific growth rate of the yeast and the specific ethanol productivity on glucose as the substrate was greater than on xylose as a substrate. Ethanol yields from glucose and xylose fermentation were typically 95 and 80% of the theoretical yield, respectively. The effect of ethanol inhibition is more pronounced for xylose fermentation than for glucose fermentation. Studies on glucose-xylose mixtures indicate that the recombinant yeast co-ferments glucose and xylose. Fermentation of a 52.8 g/L glucose and 56.3 g/L xylose mixture gave an ethanol concentration of 47.9 g/L after 36 h. Based on a theoretical yield of 0.51 g ethanol/g sugars, the ethanol yield from this experiment (for data up to 24 h) was calculated to be 0.46 g ethanol/g sugar or 90% of the theoretical yield. The specific growth rate of the yeast on glucose-xylose mixtures was found to lie between the specific growth rate on glucose and the specific growth rate on xylose. Kinetic studies were used to develop a fermentation model incorporating the effects of substrate inhibition, product inhibition, and inoculum size. Good agreements were obtained between model predictions and experimental data from batch fermentation of glucose, xylose, and their mixtures.

Collaboration


Dive into the Nancy W. Y. Ho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan S. Mosier

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge