Nandakumar Sambandam
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nandakumar Sambandam.
PLOS Biology | 2005
Teresa C. Leone; John J. Lehman; Brian N. Finck; Paul Schaeffer; Adam R. Wende; Sihem Boudina; Michael Courtois; David F. Wozniak; Nandakumar Sambandam; Carlos Bernal-Mizrachi; Zhouji Chen; John O. Holloszy; Denis M. Medeiros; Robert E. Schmidt; Jeffrey E. Saffitz; E. Dale Abel; Clay F. Semenkovich; Daniel P. Kelly
The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.
Circulation Research | 2005
Hsiu-Chiang Chiu; Attila Kovacs; Robert M. Blanton; Xianlin Han; Michael Courtois; Carla J. Weinheimer; Kathryn A. Yamada; Sylvain Brunet; Haodong Xu; Jeanne M. Nerbonne; Michael J. Welch; Nicole Fettig; Terry L. Sharp; Nandakumar Sambandam; Krista Olson; Daniel S. Ory; Jean E. Schaffer
Evidence is emerging that systemic metabolic disturbances contribute to cardiac myocyte dysfunction and clinically apparent heart failure, independent of associated coronary artery disease. To test the hypothesis that perturbation of lipid homeostasis in cardiomyocytes contributes to cardiac dysfunction, we engineered transgenic mice with cardiac-specific overexpression of fatty acid transport protein 1 (FATP1) using the &agr;-myosin heavy chain gene promoter. Two independent transgenic lines demonstrate 4-fold increased myocardial free fatty acid (FFA) uptake that is consistent with the known function of FATP1. Increased FFA uptake in this model likely contributes to early cardiomyocyte FFA accumulation (2-fold increased) and subsequent increased cardiac FFA metabolism (2-fold). By 3 months of age, transgenic mice have echocardiographic evidence of impaired left ventricular filling and biatrial enlargement, but preserved systolic function. Doppler tissue imaging and hemodynamic studies confirm that these mice have predominantly diastolic dysfunction. Furthermore, ambulatory ECG monitoring reveals prolonged QTc intervals, reflecting reductions in the densities of repolarizing, voltage-gated K+ currents in ventricular myocytes. Our results show that in the absence of systemic metabolic disturbances, such as diabetes or hyperlipidemia, perturbation of cardiomyocyte lipid homeostasis leads to cardiac dysfunction with pathophysiological findings similar to those in diabetic cardiomyopathy. Moreover, the MHC-FATP model supports a role for FATPs in FFA import into the heart in vivo.
Journal of Clinical Investigation | 2007
Eileen M. Burkart; Nandakumar Sambandam; Xianlin Han; Richard W. Gross; Michael Courtois; Carolyn M. Gierasch; Kooresh Shoghi; Michael J. Welch; Daniel P. Kelly
In the diabetic heart, chronic activation of the PPARalpha pathway drives excessive fatty acid (FA) oxidation, lipid accumulation, reduced glucose utilization, and cardiomyopathy. The related nuclear receptor, PPARbeta/delta, is also highly expressed in the heart, yet its function has not been fully delineated. To address its role in myocardial metabolism, we generated transgenic mice with cardiac-specific expression of PPARbeta/delta, driven by the myosin heavy chain (MHC-PPARbeta/delta mice). In striking contrast to MHC-PPARalpha mice, MHC-PPARbeta/delta mice had increased myocardial glucose utilization, did not accumulate myocardial lipid, and had normal cardiac function. Consistent with these observed metabolic phenotypes, we found that expression of genes involved in cellular FA transport were activated by PPARalpha but not by PPARbeta/delta. Conversely, cardiac glucose transport and glycolytic genes were activated in MHC-PPARbeta/delta mice, but repressed in MHC-PPARalpha mice. In reporter assays, we showed that PPARbeta/delta and PPARalpha exerted differential transcriptional control of the GLUT4 promoter, which may explain the observed isotype-specific effects on glucose uptake. Furthermore, myocardial injury due to ischemia/reperfusion injury was significantly reduced in the MHC-PPARbeta/delta mice compared with control or MHC-PPARalpha mice, consistent with an increased capacity for myocardial glucose utilization. These results demonstrate that PPARalpha and PPARbeta/delta drive distinct cardiac metabolic regulatory programs and identify PPARbeta/delta as a potential target for metabolic modulation therapy aimed at cardiac dysfunction caused by diabetes and ischemia.
Circulation Research | 2007
John Yang; Nandakumar Sambandam; Xianlin Han; Richard W. Gross; Michael Courtois; Attila Kovacs; Maria Febbraio; Brian N. Finck; Daniel P. Kelly
Obesity-related diabetes mellitus leads to increased myocardial uptake of fatty acids (FAs), resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that chronic activation of the FA-activated nuclear receptor, peroxisome proliferator-activated receptor &agr; (PPAR&agr;), is sufficient to drive the metabolic and functional abnormalities of the diabetic heart. Mice with cardiac-restricted overexpression of PPAR&agr; (myosin heavy chain [MHC]-PPAR&agr;) exhibit myocyte lipid accumulation and cardiac dysfunction. We sought to define the role of the long-chain FA transporter CD36 in the pathophysiology of lipotoxic forms of cardiomyopathy. MHC-PPAR&agr; mice were crossed with CD36-deficient mice (MHC-PPAR&agr;/CD36−/− mice). The absence of CD36 prevented myocyte triacylglyceride accumulation and cardiac dysfunction in the MHC-PPAR&agr; mice under basal conditions and following administration of high-fat diet. Surprisingly, the rescue of the MHC-PPAR&agr; phenotype by CD36 deficiency was associated with increased glucose uptake and oxidation rather than changes in FA utilization. As predicted by the metabolic changes, the activation of PPAR&agr; target genes involved in myocardial FA-oxidation pathways in the hearts of the MHC-PPAR&agr; mice was unchanged in the CD36-deficient background. However, PPAR&agr;-mediated suppression of genes involved in glucose uptake and oxidation was reversed in the MHC-PPAR&agr;/ CD36−/− mice. We conclude that CD36 is necessary for the development of lipotoxic cardiomyopathy in MHC-PPAR&agr; mice and that novel therapeutic strategies aimed at reducing CD36-mediated FA uptake show promise for the prevention or treatment of cardiac dysfunction related to obesity and diabetes.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Peter A. Crawford; Jan R. Crowley; Nandakumar Sambandam; Brian D. Muegge; Elizabeth K. Costello; Micah Hamady; Rob Knight; Jeffrey I. Gordon
Studies in mice indicate that the gut microbiota promotes energy harvest and storage from components of the diet when these components are plentiful. Here we examine how the microbiota shapes host metabolic and physiologic adaptations to periods of nutrient deprivation. Germ-free (GF) mice and mice who had received a gut microbiota transplant from conventionally raised donors were compared in the fed and fasted states by using functional genomic, biochemical, and physiologic assays. A 24-h fast produces a marked change in gut microbial ecology. Short-chain fatty acids generated from microbial fermentation of available glycans are maintained at higher levels compared with GF controls. During fasting, a microbiota-dependent, Pparα-regulated increase in hepatic ketogenesis occurs, and myocardial metabolism is directed to ketone body utilization. Analyses of heart rate, hydraulic work, and output, mitochondrial morphology, number, and respiration, plus ketone body, fatty acid, and glucose oxidation in isolated perfused working hearts from GF and colonized animals (combined with in vivo assessments of myocardial physiology) revealed that the fasted GF heart is able to sustain its performance by increasing glucose utilization, but heart weight, measured echocardiographically or as wet mass and normalized to tibial length or lean body weight, is significantly reduced in both fasted and fed mice. This myocardial-mass phenotype is completely reversed in GF mice by consumption of a ketogenic diet. Together, these results illustrate benefits provided by the gut microbiota during periods of nutrient deprivation, and emphasize the importance of further exploring the relationship between gut microbes and cardiovascular health.
Heart Failure Reviews | 2002
Nandakumar Sambandam; Gary D. Lopaschuk; Roger W. Brownsey; Michael F. Allard
In response to a prolonged pressure- or volume-overload, alterations occur in myocardial fatty acid, glucose, and glycogen metabolism. Oxidation of long chain fatty acids has been found to be reduced in hypertrophied hearts compared to non-hypertrophied hearts. However, this observation depends upon the degree of cardiac hypertrophy, the severity of carnitine deficiency, the concentration of fatty acid in blood or perfusate, and the myocardial workload. Glycolysis of exogenous glucose is accelerated in hypertrophied hearts. Despite the acceleration of glycolysis, glucose oxidation is not correspondingly increased leading to lower coupling between glycolysis and glucose oxidation and greater H+ production than in non-hypertrophied hearts. Although glycogen metabolism does not differ in the absence of ischemia, synthesis and degradation of glycogen are accelerated in severely ischemic hypertrophied hearts. These alterations in carbohydrate metabolism may contribute to the increased susceptibility of hypertrophied hearts to injury during ischemia and reperfusion by causing disturbances in ion homeostasis that reduce contractile function and efficiency to a greater extent than normal. As in non-hypertrophied hearts, pharmacologic enhancement of coupling between glycolysis and glucose oxidation (e.g., by directly stimulating glucose oxidation) improves recovery of function of hypertrophied hearts after ischemia. This observation provides strong support for the concept that modulation of energy metabolism in the hypertrophied heart is a useful approach to improve function of the hypertrophied heart during ischemia and reperfusion. Future investigations are necessary to determine if alternative approaches, such as glucose-insulin-potassium infusion and inhibitors of fatty acid oxidation (e.g., ranolazine, trimetazidine), also produce beneficial effects in ischemic and reperfused hypertrophied hearts.
Journal of Biological Chemistry | 2006
Brian J. DeBosch; Nandakumar Sambandam; Carla S. Weinheimer; Michael Courtois; Anthony J. Muslin
The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[3H]deoxyglucose uptake and metabolism. In contrast, akt2-/- mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2-/- mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2-/- hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.
American Journal of Physiology-heart and Circulatory Physiology | 2008
John J. Lehman; Sihem Boudina; Natasha H. Banke; Nandakumar Sambandam; Xianlin Han; Deanna M. Young; Teresa C. Leone; Richard W. Gross; E. Douglas Lewandowski; E. Dale Abel; Daniel P. Kelly
High-capacity mitochondrial ATP production is essential for normal function of the adult heart, and evidence is emerging that mitochondrial derangements occur in common myocardial diseases. Previous overexpression studies have shown that the inducible transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha is capable of activating postnatal cardiac myocyte mitochondrial biogenesis. Recently, we generated mice deficient in PGC-1alpha (PGC-1alpha(-/-) mice), which survive with modestly blunted postnatal cardiac growth. To determine if PGC-1alpha is essential for normal cardiac energy metabolic capacity, mitochondrial function experiments were performed on saponin-permeabilized myocardial fibers from PGC-1alpha(-/-) mice. These experiments demonstrated reduced maximal (state 3) palmitoyl-l-carnitine respiration and increased maximal (state 3) pyruvate respiration in PGC-1alpha(-/-) mice compared with PGC-1alpha(+/+) controls. ATP synthesis rates obtained during maximal (state 3) respiration in permeabilized myocardial fibers were reduced for PGC-1alpha(-/-) mice, whereas ATP produced per oxygen consumed (ATP/O), a measure of metabolic efficiency, was decreased by 58% for PGC-1alpha(-/-) fibers. Ex vivo isolated working heart experiments demonstrated that PGC-1alpha(-/-) mice exhibited lower cardiac power, reduced palmitate oxidation, and increased reliance on glucose oxidation, with the latter likely a compensatory response. (13)C NMR revealed that hearts from PGC-1alpha(-/-) mice exhibited a limited capacity to recruit triglyceride as a source for lipid oxidation during beta-adrenergic challenge. Consistent with reduced mitochondrial fatty acid oxidative enzyme gene expression, the total triglyceride content was greater in hearts of PGC-1alpha(-/-) mice relative to PGC-1alpha(+/+) following a fast. Overall, these results demonstrate that PGC-1alpha is essential for the maintenance of maximal, efficient cardiac mitochondrial fatty acid oxidation, ATP synthesis, and myocardial lipid homeostasis.
Circulation | 2010
Jennifer G. Duncan; Kalyani G. Bharadwaj; Juliet L. Fong; Riddhi Mitra; Nandakumar Sambandam; Michael Courtois; Kory J. Lavine; Ira J. Goldberg; Daniel P. Kelly
Background— Emerging evidence in obesity and diabetes mellitus demonstrates that excessive myocardial fatty acid uptake and oxidation contribute to cardiac dysfunction. Transgenic mice with cardiac-specific overexpression of the fatty acid–activated nuclear receptor peroxisome proliferator-activated receptor-α (myosin heavy chain [MHC]-PPARα mice) exhibit phenotypic features of the diabetic heart, which are rescued by deletion of CD36, a fatty acid transporter, despite persistent activation of PPARα gene targets involved in fatty acid oxidation. Methods and Results— To further define the source of fatty acid that leads to cardiomyopathy associated with lipid excess, we crossed MHC-PPARα mice with mice deficient for cardiac lipoprotein lipase (hsLpLko). MHC-PPARα/hsLpLko mice exhibit improved cardiac function and reduced myocardial triglyceride content compared with MHC-PPARα mice. Surprisingly, in contrast to MHC-PPARα/CD36ko mice, the activity of the cardiac PPARα gene regulatory pathway is normalized in MHC-PPARα/hsLpLko mice, suggesting that PPARα ligand activity exists in the lipoprotein particle. Indeed, LpL mediated hydrolysis of very-low-density lipoprotein activated PPARα in cardiac myocytes in culture. The rescue of cardiac function in both models was associated with improved mitochondrial ultrastructure and reactivation of transcriptional regulators of mitochondrial function. Conclusions— MHC-PPARα mouse hearts acquire excess lipoprotein-derived lipids. LpL deficiency rescues myocyte triglyceride accumulation, mitochondrial gene regulatory derangements, and contractile function in MHC-PPARα mice. Finally, LpL serves as a source of activating ligand for PPARα in the cardiomyocyte.
Circulation-heart Failure | 2011
Joel D. Schilling; Ling Lai; Nandakumar Sambandam; Courtney E. Dey; Teresa C. Leone; Daniel P. Kelly
Background—Currently, there are no specific therapies available to treat cardiac dysfunction caused by sepsis and other chronic inflammatory conditions. Activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is an early event in Gram-negative bacterial sepsis, triggering a robust inflammatory response and changes in metabolism. Peroxisome proliferator–activated receptor-&ggr; coactivator-1 (PGC-1) &agr; and &bgr; serve as critical physiological regulators of energy metabolic gene expression in heart. Methods and Results—Injection of mice with LPS triggered a myocardial fuel switch similar to that of the failing heart: reduced mitochondrial substrate flux and myocyte lipid accumulation. The LPS-induced metabolic changes were associated with diminished ventricular function and suppression of the genes encoding PGC-1&agr; and &bgr;, known transcriptional regulators of mitochondrial function. This cascade of events required TLR4 and nuclear factor-&kgr;B activation. Restoration of PGC-1&bgr; expression in cardiac myocytes in culture and in vivo in mice reversed the gene regulatory, metabolic, and functional derangements triggered by LPS. Interestingly, the effects of PGC-1&bgr; overexpression were independent of the upstream inflammatory response, highlighting the potential utility of modulating downstream metabolic derangements in cardiac myocytes as a novel strategy to prevent or treat sepsis-induced heart failure. Conclusions—LPS triggers cardiac energy metabolic reprogramming through suppression of PGC-1 coactivators in the cardiac myocyte. Reactivation of PGC-1&bgr; expression can reverse the metabolic and functional derangements caused by LPS-TLR4 activation, identifying the PGC-1 axis as a candidate therapeutic target for sepsis-induced heart failure.