Nandana Bhardwaj
Indian Institute of Technology Kharagpur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nandana Bhardwaj.
Biotechnology Advances | 2010
Nandana Bhardwaj; Subhas C. Kundu
With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electrospun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology.
Biomaterials | 2011
Nandana Bhardwaj; Quynhhoa T. Nguyen; Albert C. Chen; David L. Kaplan; Robert L. Sah; Subhas C. Kundu
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering.
Biopolymers | 2012
Subhas C. Kundu; Banani Kundu; Sarmistha Talukdar; Subia Bano; Sunita Nayak; Joydip Kundu; Biman B. Mandal; Nandana Bhardwaj; Mahendran Botlagunta; Biraja C. Dash; Chitrangada Acharya; Ananta K. Ghosh
The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials.
International Journal of Biological Macromolecules | 2011
Nandana Bhardwaj; Sagar Chakraborty; Subhas C. Kundu
Recently tissue engineering has escalated much interest in biomedical and biotechnological applications. In this regard, exploration of new and suitable biomaterials is needed. Silk fibroin protein is used as one of the most preferable biomaterials for fabrication of scaffolds and several new techniques are being adopted to fabricate silk scaffolds with greater ease, efficiency and perfection. In this study, a freeze gelation technique is used for fabrication of silk fibroin protein 3D scaffolds, which is both time and energy efficient as compared to the conventional freeze drying technique. The fabricated silk fibroin freeze-gelled scaffolds are evaluated micro structurally for morphology with scanning electron microscopy which reveals relatively homogeneous pore structure and good interconnectivity. The pore sizes and porosity of these scaffolds ranges between 60-110μm and 90-95%, respectively. Mechanical test shows that the compressive strength of the scaffolds is in the range of 20-40kPa. The applicability to cell culture of the freeze gelled scaffolds has been examined with human keratinocytes HaCat cells which show the good cell viability and proliferation of cells after 5 days of culture suggesting the cytocompatibility. The freeze-gelled 3D scaffolds show comparable results with the conventionally prepared freeze dried 3D scaffolds. Thus, this technique may be used as an alternative method for 3D scaffolds preparation and may also be utilized for tissue engineering applications.
Macromolecular Bioscience | 2015
Nandana Bhardwaj; Dipali Devi; Biman B. Mandal
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Journal of Materials Chemistry B | 2016
Nandana Bhardwaj; Yogendra Pratap Singh; Dipali Devi; Raghuram Kandimalla; Jibon Kotoky; Biman B. Mandal
Articular cartilage damage represents one of the most perplexing clinical problems of musculoskeletal therapeutics due to its limited self-repair and regenerative capabilities. In this study, 3D porous silk fibroin scaffolds derived from non-mulberry muga silkworm Antheraea assamensis were fabricated and examined for their ability to support cartilage tissue engineering. Additionally, Bombyx mori and Philosamia ricini silk fibroin scaffolds were utilized for comparative studies. Herein, the fabricated scaffolds were thoroughly characterized and compared for cartilaginous tissue formation within the silk fibroin scaffolds seeded with primary porcine chondrocytes and cultured in vitro for 2 weeks. Surface morphology and structural conformation studies revealed the highly interconnected porous structure (pore size 80-150 μm) with enhanced stability within their structure. The fabricated scaffolds demonstrated improved mechanical properties and were followed-up with sequential experiments to reveal improved thermal and degradation properties. Silk fibroin scaffolds of A. assamensis and P. ricini supported better chondrocyte attachment and proliferation as indicated by metabolic activities and fluorescence microscopic studies. Biochemical analysis demonstrated significantly higher production of sulphated glycosaminoglycans (sGAGs) and type II collagen in A. assamensis silk fibroin scaffolds followed by P. ricini and B. mori scaffolds (p < 0.001). Furthermore, histochemistry and immunohistochemical studies indicated enhanced accumulation of sGAGs and expression of collagen II. Moreover, the scaffolds in a subcutaneous model of rat demonstrated in vivo biocompatibility after 8 weeks of implantation. Taken together, these results demonstrate the positive attributes from the non-mulberry silk fibroin scaffold of A. assamensis and suggest its suitability as a promising scaffold for chondrocyte based cartilage repair.
International Journal of Biological Macromolecules | 2015
Nandana Bhardwaj; Rangam Rajkhowa; Xungai Wang; Dipali Devi
Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications.
Current Pharmaceutical Design | 2017
Nandana Bhardwaj; Dimple Chouhan; Biman B. Mandal
The global volume of skin damage or injuries has major healthcare implications and, accounts for about half of the worlds annual expenditure in the healthcare sector. In the last two decades, tissue-engineered skin constructs have shown great promise in the treatment of various skin-related disorders such as deep burns and wounds. The treatment methods for skin replacement and repair have evolved from utilization of autologous epidermal sheets to more complex bilayered cutaneous tissue engineered skin substitutes. However, inadequate vascularization, lack of flexibility in drug/growth factors loading and inability to reconstitute skin appendages such as hair follicles limits their utilization for restoration of normal skin anatomy on a routine basis. Recent advancements in cutting-edge technology from stem cell biology, nanotechnology, and various vascularization strategies have provided a tremendous springboard for researchers in developing and manipulating tissue engineered skin substitutes for improved skin regeneration and wound healing. This review summarizes the overview of skin tissue engineering and wound healing. Herein, developments and challenges of various available biomaterials, cell sources and in vitro skin models (full thickness and wound healing models) in tissue-engineered skin research are discussed. Furthermore, central to the discussion is the inclusion of various innovative strategies starting from stem cells, nanotechnology, vascularization strategies, microfluidics to three dimensional (3D) bioprinting based strategies for generation of complex skin mimics. The review then moves on to highlight the future prospects of advanced construction strategies of these bioengineered skin constructs and their contribution to wound healing and skin regeneration on current practice.
Biomedical Materials | 2017
Yogendra Pratap Singh; Mimi Adhikary; Nandana Bhardwaj; Bibhas K. Bhunia; Biman B. Mandal
The limited self-regenerative capacity of adult cartilage has steered the upsurge in tissue engineered replacements to combat the problem of osteoarthritis. In the present study, the potential of fiber-reinforced silk composites from mulberry (Bombyx mori) and non-mulberry (Antheraea assamensis) silk has been investigated for cartilage tissue engineering. The fabricated composites were physico-chemically characterized and analyzed for cellular viability, proliferation, extracellular matrix formation and immunocompatibility. Both mulberry and non-mulberry silk composites showed effective swelling (25%-30%) and degradation (10%-30%) behavior, owing to their interconnected porous nature. The non-mulberry fiber-reinforced composite scaffolds showed slower degradation (∼90% mass remaining) than mulberry silk over a period of 28 days. The reinforcement of silk fibers within silk solution resulted in an increased compressive modulus and stiffness (nearly eight-fold). The biochemical analysis revealed significant increase in DNA content, sulphated glycosaminoglycan (sGAG) (∼1.5 fold) and collagen (∼1.4 fold) in reinforced composites as compared to pure solution scaffolds (p ≤ 0.01). Histological and immunohistochemical (IHC) staining corroborated enhanced deposition of sGAG and localization of collagen type II in fiber-reinforced composites. This was further substantiated by real time polymerase chain reaction studies, which indicated an up-regulation (∼1.5 fold) of cartilage-specific gene markers namely collagen type II, sox-9 and aggrecan. The minimal secretion of tumor necrosis factor-α (TNF-α) by murine macrophages further demonstrated in vitro immunocompatibility of the scaffolds. Taken together, the results signified the potential of silk fiber-reinforced composite (particularly non-mulberry, A. assamensis) scaffolds as viable alternative biomaterial for cartilage tissue engineering.
RSC Advances | 2016
Jadi Praveen Kumar; Nandana Bhardwaj; Biman B. Mandal
Biomaterials play an important role as templates to mimic native extracellular matrices in tissue engineering applications. Of late, attributes such as mitogenic activity, biocompatibility and biodegradability have conferred a special niche to silk sericin (SS) in the field of tissue engineering. This study deals with the fabrication of two dimensional (2D) and three dimensional (3D) matrices based on blending of gelatin with SS extracted from the cocoons of Bombyx mori (BM), Antheraea assamensis (AA) and Philosamia ricini (PR) silkworms. The fabricated matrices were cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS). Assessment of surface topography using atomic force microscopy (AFM) revealed enhanced surface roughness of SS post blending with gelatin. The cross-linking mediated secondary structural changes were confirmed by Fourier transform infrared spectroscopy (FTIR). Gelatin/PR sericin (GPRS) blended 3D matrices were found to be highly porous compared to gelatin/BM sericin (GBMS), gelatin/AA sericin (GAAS) and only gelatin matrices. In vitro protein release studies showed maximum amount of SS release from GAAS matrices. Blending of SS with gelatin lowered the mechanical strength of the matrices. Cells (mouse fibroblast and human keratinocytes) cultured on gelatin/silk sericin (GSS) matrices showed enhanced attachment and proliferation. Furthermore, flow cytometric cell cycle analysis attested that the matrices supported cell growth without any cell cycle arrest. The amount of tumor necrosis factor (TNF)-α released by murine macrophage (Raw 264.7) cells cultured on GSS matrices suggested immunocompatibility of the fabricated matrices. These findings corroborate that the GSS 2D and 3D matrices may serve as prospective biomaterials in the domain of tissue engineering.