Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nandu Goswami is active.

Publication


Featured researches published by Nandu Goswami.


Biological Psychology | 2010

Trait and state positive affect and cardiovascular recovery from experimental academic stress

Ilona Papousek; Karin Nauschnegg; Manuela Paechter; Helmut K. Lackner; Nandu Goswami; Günter Schulter

As compared to negative affect, only a small number of studies have examined influences of positive affect on cardiovascular stress responses, of which only a few were concerned with cardiovascular recovery. In this study, heart rate, low- and high-frequency heart rate variability, blood pressure, and levels of subjectively experienced stress were obtained in 65 students before, during and after exposure to academic stress in an ecologically valid setting. Higher trait positive affect was associated with more complete cardiovascular and subjective post-stress recovery. This effect was independent of negative affect and of affective state during anticipation of the stressor. In contrast, a more positive affective state during anticipation of the challenge was related to poor post-stress recovery. The findings suggest that a temporally stable positive affect disposition may be related to adaptive responses, whereas positive emotional states in the context of stressful events can also contribute to prolonged post-stress recovery.


Stroke | 2011

Impairment of Cerebral Blood Flow Regulation in Astronauts With Orthostatic Intolerance After Flight

Andrew P. Blaber; Nandu Goswami; Roberta L. Bondar; Mahmood S. Kassam

Background and Purpose— We investigated cerebral blood flow regulation in astronauts before and after flights. We hypothesized that autoregulation would be different before flight and after flight between nonfinishers and the finishers of a stand test. Methods— Twenty-seven astronauts from shuttle missions lasting 8 to 16 days underwent a 10-minute stand test: 10 days before flight, 1 to 2 hours and 3 days after landing. Mean blood flow velocity of the middle cerebral artery (MCA) was measured using transcranial Doppler; Mean arterial pressure was measured using a Finapres (Ohmeda, Englewood, CO) and was adjusted to the level of the MCA (BPMCA). Cross-spectral power, gain, phase, and coherence were determined for the relation between BPMCA and the cerebrovascular resistance index mean blood flow velocity/BPMCA. Results— BPMCA was reduced with stand (P<0.001). Differences between finishers and nonfinishers (P=0.011) and over test days (P=0.004) were observed. Cerebrovascular conductance was affected by stand (P<0.001), by group (P<0.001) with a group by stand, and test day interaction (P<0.01). Preflight data suggest that the nonfinishers were operating at a higher cerebral vasodilation than finishers for a given BPMCA, and on landing day the nonfinishers had a greater decrease in mean blood flow velocity as a function of BPMCA with standing compared to finishers and preflight. There was a significant interaction effect of gender over the test days and from supine to stand (P=0.035). Conclusions— Our results indicate that the cause of presyncope in astronauts may be related to a mismatch of cerebral blood flow with blood pressure. Astronaut gender may also play a role in susceptibility to orthostatic intolerance after flight.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Reactive hyperemia in the human liver

Helmut Hinghofer-Szalkay; Nandu Goswami; Andreas Rössler; Erik Grasser; Daniel Schneditz

We tested whether hepatic blood flow is altered following central hypovolemia caused by simulated orthostatic stress. After 30 min of supine rest, hemodynamic, plasma density, and indocyanine green (ICG) clearance responses were determined during and after release of a 15-min 40 mmHg lower body negative pressure (LBNP) stimulus. Plasma density shifts and the time course of plasma ICG concentration were used to assess intravascular volume and hepatic perfusion changes. Plasma volume decreased during LBNP (-10%) as did cardiac output (-15%), whereas heart rate (+14%) and peripheral resistance (+17%) increased, as expected. On the basis of ICG elimination, hepatic perfusion decreased from 1.67 +/- 0.32 (pre-LBNP control) to 1.29 +/- 0.26 l/min (-22%) during LBNP. Immediately after LBNP release, we found hepatic perfusion 25% above control levels (to 2.08 +/- 0.48 l/min, P = 0.0001). Hepatic vascular conductance after LBNP was also significantly higher than during pre-LBNP control (21.4 +/- 5.4 vs. 17.1 +/- 3.1 ml.min(-1).mmHg(-1), P < 0.0001). This indicates autoregulatory vasodilatation in response to relative ischemia during a stimulus that has cardiovascular effects similar to normal orthostasis. We present evidence for physiological post-LBNP reactive hyperemia in the human liver. Further studies are needed to quantify the intensity of this response in relation to stimulus duration and magnitude, and clarify its mechanism.


European Journal of Applied Physiology | 2013

Cerebrovascular autoregulation: lessons learned from spaceflight research.

Andrew P. Blaber; Kathryn Zuj; Nandu Goswami

This review summarizes our current understanding of cerebral blood flow regulation with exposure to microgravity, outlines potential mechanisms associated with post-flight orthostatic intolerance, and proposes future directions for research and linkages with cerebrovascular disorders found in the general population. It encompasses research from cellular mechanisms (e.g. hind limb suspension: tissue, animal studies) to whole body analysis with respect to understanding human responses using space analogue studies (bed rest, parabolic flight) as well as data collected before, during, and after spaceflight. Recent evidence indicates that cerebrovascular autoregulation may be impaired in some astronauts leading to increased susceptibility to syncope upon return to a gravitational environment. The proposed review not only provides insights into the mechanisms of post-flight orthostatic intolerance, but also increases our understanding of the mechanisms associated with pathophysiological conditions (e.g. unexplained syncope) with clinical applications in relation to postural hypotension or intradialytic hypotension.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014

Changes in calpains and calpastatin in the soleus muscle of Daurian ground squirrels during hibernation

Chen-Xi Yang; Yue He; Yunfang Gao; Huiping Wang; Nandu Goswami

We investigated changes in muscle mass, calpains, calpastatin and Z-disk ultrastructure in the soleus muscle (SOL) of Daurian ground squirrels (Spermophilus dauricus) after hibernation or hindlimb suspension to determine possible mechanisms by which muscle atrophy is prevented in hibernators. Squirrels (n=30) were divided into five groups: no hibernation group (PRE, n=6); hindlimb suspension group (HLS, n=6); two month hibernation group (HIB, n=6); two day group after 90±12 days of hibernation (POST, n=6); and forced exercise group (one time forced, moderate-intensity treadmill exercise) after arousal (FE, n=6). Activity and protein expression of calpains were determined by casein zymography and western blotting, and Z-disk ultrastructure was observed by transmission electron microscopy. The following results were found. Lower body mass and higher SOL muscle mass (mg) to total body mass (g) ratio were observed in HIB and POST; calpain-1 activity increased significantly by 176% (P=0.034) in HLS compared to the PRE group; no significant changes were observed in calpain-2 activity. Protein expression of calpain-1 and calpain-2 increased by 83% (P=0.041) and 208% (P=0.029) in HLS compared to the PRE group, respectively; calpastatin expression increased significantly by 180% (P<0.001) and 153% (P=0.007) in HIB and POST, respectively; the myofilaments were well-organized, and the width of the sarcomere and the Z-disk both appeared visually similar among the pre-hibernation, hibernating and post-hibernation animals. Inhibition of calpain activity and consequently calpain-mediated protein degradation by highly elevated calpastatin protein expression levels may be an important mechanism for preventing muscle protein loss during hibernation and ensuring that Z-lines remained ultrastructurally intact.


PLOS ONE | 2012

Coagulation Changes during Presyncope and Recovery

Gerhard Cvirn; Axel Schlagenhauf; Bettina Leschnik; Martin Koestenberger; Andreas Roessler; Andreas Jantscher; Karoline Vrecko; Guenther Juergens; Helmut Hinghofer-Szalkay; Nandu Goswami

Orthostatic stress activates the coagulation system. The extent of coagulation activation with full orthostatic load leading to presyncope is unknown. We examined in 7 healthy males whether presyncope, using a combination of head up tilt (HUT) and lower body negative pressure (LBNP), leads to coagulation changes as well as in the return to baseline during recovery. Coagulation responses (whole blood thrombelastometry, whole blood platelet aggregation, endogenous thrombin potential, markers of endothelial activation and thrombin generation), blood cell counts and plasma mass density (for volume changes) were measured before, during, and 20 min after the orthostatic stress. Maximum orthostatic load led to a 25% plasma volume loss. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential, and tissue factor pathway inhibitor levels increased during the protocol, commensurable with hemoconcentration. The markers of endothelial activation (tissue factor, tissue plasminogen activator), and thrombin generation (F1+2, prothrombin fragments 1 and 2, and TAT, thrombin-antithrombin complex) increased to an extent far beyond the hemoconcentration effect. During recovery, the markers of endothelial activation returned to initial supine values, but F1+2 and TAT remained elevated, suggestive of increased coagulability. Our findings of increased coagulability at 20 min of recovery from presyncope may have greater clinical significance than short-term procoagulant changes observed during standing. While our experiments were conducted in healthy subjects, the observed hypercoagulability during graded orthostatic challenge, at presyncope and in recovery may be an important risk factor particularly for patients already at high risk for thromboembolic events (e.g. those with coronary heart disease, atherosclerosis or hypertensives).


Endocrinology | 2015

Aquaporins, Vasopressin, and Aging: Current Perspectives

Grazia Tamma; Nandu Goswami; Johannes Reichmuth; Natale G. De Santo; Giovanna Valenti

Functioning of the hypothalamic-neurohypophyseal-vasopressin axis is altered in aging, and the pathway may represent a plausible target to slow the process of aging. Arginine vasopressin, a nine-amino acid peptide that is secreted from the posterior pituitary in response to high plasma osmolality and hypotension, is central in this pathway. Vasopressin has important roles in circulatory and water homoeostasis mediated by vasopressin receptor subtypes V1a (vascular), V1b (pituitary), and V2 (vascular, renal). A dysfunction in this pathway as a result of aging can result in multiple abnormalities in several physiological systems. In addition, vasopressin plasma concentration is significantly higher in males than in females and vasopressin-mediated effects on renal and vascular targets are more pronounced in males than in females. These findings may be caused by sex differences in vasopressin secretion and action, making men more susceptible than females to diseases like hypertension, cardiovascular and chronic kidney diseases, and urolithiasis. Recently the availability of new, potent, orally active vasopressin receptor antagonists, the vaptans, has strongly increased the interest on vasopressin and its receptors as a new target for prevention of age-related diseases associated with its receptor-altered signaling. This review summarizes the recent literature in the field of vasopressin signaling in age-dependent abnormalities in kidney, cardiovascular function, and bone function.


European Journal of Applied Physiology | 2013

Maximizing information from space data resources: a case for expanding integration across research disciplines

Nandu Goswami; Jerry J. Batzel; Gilles Clément; T. Peter Stein; Alan R. Hargens; M. Keith Sharp; Andrew P. Blaber; Peter G. Roma; Helmut Hinghofer-Szalkay

Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.


Aviation, Space, and Environmental Medicine | 2013

Blood volume redistribution during hypovolemia.

Andrew P. Blaber; Helmut Hinghofer-Szalkay; Nandu Goswami

BACKGROUND The goal of this study was to investigate the contribution of splanchnic volume redistribution and lower limb vasoconstriction in the maintenance of blood pressure during progressive central hypovolemia induced by graded lower body negative pressure (LBNP). It was hypothesized that splanchnic blood volume loss during LBNP would buffer decreases in thoracic blood volume. METHODS There were 15 healthy subjects (8 men, 7 women) who participated in the study. We used LBNP of -10, -20, -30, and -40 mmHg with segmental impedance analysis to determine central and splanchnic volume changes, and near infrared spectroscopy (NIRS) to assess calf venous volume changes and vasoconstrictor tone. RESULTS In relation to baseline, LBNP to -40 mmHg resulted in a 57% increase in deoxygenated blood in the calf, indicating venous pooling in the lower limbs. These events led to a decrease in venous return and a 28% decline in cardiac output. Total upper body impedance increased by 6.6% with a 2.4% change in thoracic and a 13.1% increase in splanchnic impedance with progressive LBNP. Splanchnic blood volume contributed to more than 50% of the volume redistribution to the thoracic compartment during hypovolemia. Both men and women increased their heart rate, but only men vasoconstricted (4.4%) with increasing LBNP. The net result of these events was the maintenance of mean arterial blood pressure with no presyncopal symptoms in these subjects. DISCUSSION Our results suggest that splanchnic blood volume redistribution--rather than leg vasoconstriction--plays an important role in blood pressure regulation during central hypovolemia.


European Journal of Clinical Investigation | 2011

Hormonal and plasma volume changes after presyncope

Helmut Hinghofer-Szalkay; Helmut K. Lackner; Andreas Rössler; Bettina Narath; Andreas Jantscher; Nandu Goswami

Eur J Clin Invest 2011; 41 (11): 1180–1185

Collaboration


Dive into the Nandu Goswami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Rössler

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Helmut K. Lackner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Andreas Roessler

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry J. Batzel

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Patrick De Boever

Flemish Institute for Technological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge