Nanik Rahmani
Indonesian Institute of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nanik Rahmani.
Bioresource Technology | 2019
Nanik Rahmani; Prihardi Kahar; Puspita Lisdiyanti; Jaemin Lee; Yopi; Bambang Prasetya; Chiaki Ogino; Akihiko Kondo
A novel strategy for the low-cost, high-yield co-production of xylose and xylooligosaccharides together with no xylose inhibition was developed using a novel heterologous expression of XYN10Ks_480 endo-1,4-β-xylanase with a ricin-type β-trefoil type of domain and XYN11Ks_480 endo-1,4-β-xylanase with a CBM 2 superfamily from the Kitasatospora sp in an actinomycetes expression system. Xylose is the main building block for hemicellulose xylan. Our findings demonstrated high levels of expression and catalytic activity for XYN10Ks_480 during hydrolysis of the extracted xylan of bagasse, and three types of xylan-based substrates were used to produce xylose and xylooligosaccharides. However, hydrolysis by XYN11Ks_480 produced xylooligosaccharides without xylose formation. This study demonstrated how integrating sodium hypochlorite-extracted xylan and enzymatic hydrolysis could provide an alternative strategy for the generation of XOS from lignocellulosic material.
Bioscience, Biotechnology, and Biochemistry | 2018
Nanik Rahmani; Prihardi Kahar; Puspita Lisdiyanti; Euis Hermiati; Jaemin Lee; Yopi; Bambang Prasetya; Chiaki Ogino; Akihiko Kondo
Abstract The addition of enzymes that are capable of degrading hemicellulose has a potential to reduce the need for commercial enzymes during biomass hydrolysis in the production of fermentable sugars. In this study, a high xylanase producing actinomycete strain (Kitasatospora sp. ID06-480) and the first ethyl ferulate producing actinomycete strain (Nonomuraea sp. ID06-094) were selected from 797 rare actinomycetes, respectively, which were isolated in Indonesia. The addition (30%, v/v) of a crude enzyme supernatant from the selected strains in sugarcane bagasse hydrolysis with low-level loading (1 FPU/g-biomass) of Cellic® CTec2 enhanced both the released amount of glucose and reducing sugars. When the reaction with Ctec2 was combined with crude enzymes containing either xylanase or feruloyl esterase, high conversion yield of glucose from cellulose at 60.5% could be achieved after 72 h-saccharification. Xylanase and feruloyl esterase produced by actinomycetes that cotanined in culture supernatants could enhance sugarcane bagasse hydrolysis with low loading commercial CTec2 enzyme.
PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2017 | 2017
Nanik Rahmani; Alifah Mafatikhul Jannah; Puspita Lisdiyanti; Bambang Prasetya; Yopi
The optimizations of enzymatic hydrolysis to produce of xylo-oligosaccharides (XOs) from three different lignocellulosic biomasses were investigated. Sugarcane bagasse, oil palm empty fruit bunch, and rice straw contain rich hemicelluloses especially hetero-xylan which can be hydrolyzes by endo-xylanase enzyme. Enzymatic hydrolysis of sugarcane bagasse by endo-xylanase from Kitasatospora sp. was optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 4 % substrate concentrations, while oil palm empty fruit bunchwas optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 5 % substrate concentrations, and rice straw was optimum at 40 °C temperature hydrolysis using 16 U of enzyme concentrations and 4 % substrate concentrations. The hydrolysis products were analyzed by TLC and HPLC. The main product hydrolysis for sugarcane bagasse, oil palm empty fruit bunch and rice straw are xylobiose.The optimizations of enzymatic hydrolysis to produce of xylo-oligosaccharides (XOs) from three different lignocellulosic biomasses were investigated. Sugarcane bagasse, oil palm empty fruit bunch, and rice straw contain rich hemicelluloses especially hetero-xylan which can be hydrolyzes by endo-xylanase enzyme. Enzymatic hydrolysis of sugarcane bagasse by endo-xylanase from Kitasatospora sp. was optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 4 % substrate concentrations, while oil palm empty fruit bunchwas optimum at temperature hydrolysis 30 °C using 16 U of enzyme concentrations and 5 % substrate concentrations, and rice straw was optimum at 40 °C temperature hydrolysis using 16 U of enzyme concentrations and 4 % substrate concentrations. The hydrolysis products were analyzed by TLC and HPLC. The main product hydrolysis for sugarcane bagasse, oil palm empty fruit bunch and rice straw are xylobiose.
PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2017 | 2017
Yopi; Nanik Rahmani; Alifah Mafatikhul Jannah; Irfan Pebi Nugraha; Roni Masri Ramadana
Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produc...
Jurnal Penelitian Pascapanen Pertanian | 2017
Nanik Rahmani; Ade Andriani; nFN Yopi; Sri Hartati
Characteristic the physic-chemical of Indonesia cassava starch from four cultivated varieties has been conducted for maltooligosaccharide production. Result of proximate analysis of the extracted starch indicated that the extracted starch was quite pure. The purity of the extracted starch was visually confirmed by microscopic analysis by using SEM micrographs at 2500X magnifications show that the integrity of the granules starch as intact. Based on the amylopectin and amylase content showed that one of cultivated variety of cassava, cultivated variety Kuning contain the amylopectin higher than amylase was compared with the other cultivated variety. The next focus research was analysis potential of starch from cultivated variety Kuning for maltooligosaccharide production by enzymatic hydrolysis by ?-amylase from marine bacterium Brevibacterium sp. The optimum hydrolysis condition for cultivated variety Kuning was obtained substrate concentration 4.5% (b/v), comparison of substrate: enzyme 1:2, temperature reaction 30oC with reducing sugars concentration of 13.359 ppm. The hydrolysis products of cassava starch cultivated variety Kuning were maltooligosaccharides mixture, yielding maltose, maltotriose, maltotetraose, maltopentaose. This result showed that cassava starch of cultivated varieties Kuning potential for maltooligosaccharides production. PRODUKSI MALTOOLIGOSAKARIDA DARI UBI KAYU VARIETAS KUNINGKarakteristik fisiko kimia karbohidrat dari empat varietas kultivar asal Indonesia dilakukan untuk melihat potensinya sebagai bahan baku untuk produksi maltooligosakarida. Analisa proksimat karbohidrat hasil ekstraksi dari keempat varietas kultivar ubi kayu mengindikasikan bahwa karbohidrat yang dihasilkan cukup murni. Kemurnian dari karbohidrat tersebut terlihat setelah dikonfirmasi dengan analisa mikrokospis dengan menggunakan mikroskop electron SEM dengan pembesaran 2500X yang menunjukkan bahwa granulanya utuh. Berdasarkan kadar amilopektin dan amilosa menunjukkan bahwa salah satu varietas kultivar ubi kayu yaitu varietas Kuning mengandung amilopektin lebih tinggi dibandingkan kadar amilosanya jika dibandingkan dengan tiga varietas kultivar lainnya. Fokus penelitian selanjutnya adalah analisa potensi karbohidrat varietas kultivar Kuning tersebut untuk produksi maltooligosakarida dengan hidrolisis enzimatis oleh ?-amylase dari Brevibacterium sp. Kondisi optimum hidrolisis dari varietas kultivar Kuning diperoleh pada konsentrasi substrat 4.5% (b/v), perbandingan substrat dan enzim 1:2, suhu reaksi 30oC dengan kadar gula reduksi yang diperoleh 13.359 ppm. Produk hidrolisis dari ubi kayu varietas kultivar Kuning adalah berupa campuran maltooligosakarida yang terdiri atas maltose, maltotriose, maltotetraose, maltopentaose. Hasil ini menunjukkan bahwa karbohidrat ubi kayu dari varietas kultivar Kuning mempunyai potensi untuk digunakan sebagai bahan baku untuk produksi maltooligosakarida.
ANNALES BOGORIENSES | 2013
Ahmad Thontowi; Nanik Rahmani; Yopi Yopi
Bt05 is marine bacterium which was isolated from the Jakarta Bay, Indonesia. The aim of this study was to characterize PAHs-degrading property, molecular identification by partial analysis of 16S rRNA gene and to partially analyze dioxygenase gene of Bt05 isolate. Our further study on this isolate revealed that it could degrade three PAHs (phenanthrene, dibenzothiophene, fluorene) between 60%–90% within 11 days at 100 ppm level. This finding indicated the potential of the isolate for bioremediation of PAHs. The isolate was identified as Alteromonas alvinellae by phylogenetic analysis of 16S rRNA gene sequence. Sequence analysis of the PCR product of PAH dioxygenase genes amplified using two primer set (iiDA and ppAH) of the isolate were identified 97% as naphthalene dioxygenase gene ( pha Ac) and 58% as 1,2-dioxygenase.
AMB Express | 2017
Nanik Rahmani; Norimasa Kashiwagi; Jaemin Lee; Satoko Niimi-Nakamura; Hana Matsumoto; Prihardi Kahar; Puspita Lisdiyanti; Yopi; Bambang Prasetya; Chiaki Ogino; Akihiko Kondo
Jurnal Teknologi Indonesia | 2016
Yopi; Nanik Rahmani
International Journal on Advanced Science, Engineering and Information Technology | 2014
Nanik Rahmani; Nadia Ulfa Jabbar Robbani; Irma Herawati Suparto; Yopi Yopi
Teknologi Indonesia | 2017
Nanik Rahmani; Ade Andriani; Sri Hartati; Yopi Yopi