Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nannan Chang is active.

Publication


Featured researches published by Nannan Chang.


Cell Research | 2013

Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos

Nannan Chang; Changhong Sun; Lu Gao; Dan Zhu; Xiufei Xu; Xiaojun Zhu; Jing-Wei Xiong; Jianzhong Jeff Xi

Recent advances with the type II clustered regularly interspaced short palindromic repeats (CRISPR) system promise an improved approach to genome editing. However, the applicability and efficiency of this system in model organisms, such as zebrafish, are little studied. Here, we report that RNA-guided Cas9 nuclease efficiently facilitates genome editing in both mammalian cells and zebrafish embryos in a simple and robust manner. Over 35% of site-specific somatic mutations were found when specific Cas/gRNA was used to target either etsrp, gata4 or gata5 in zebrafish embryos in vivo. The Cas9/gRNA efficiently induced biallelic conversion of etsrp or gata5 in the resulting somatic cells, recapitulating their respective vessel phenotypes in etsrpy11 mutant embryos or cardia bifida phenotypes in fautm236a mutant embryos. Finally, we successfully achieved site-specific insertion of mloxP sequence induced by Cas9/gRNA system in zebrafish embryos. These results demonstrate that the Cas9/gRNA system has the potential of becoming a simple, robust and efficient reverse genetic tool for zebrafish and other model organisms. Together with other genome-engineering technologies, the Cas9 system is promising for applications in biology, agriculture, environmental studies and medicine.


Cell Research | 2014

Hydrogen peroxide primes heart regeneration with a derepression mechanism

Peidong Han; Xiao-Hai Zhou; Nannan Chang; Chenglu Xiao; Shouyu Yan; He Ren; Xin-Zhuang Yang; Meiling Zhang; Qing Wu; Boyang Tang; Jupeng Diao; Xiaojun Zhu; Chuanmao Zhang; Chuan-Yun Li; Heping Cheng; Jing-Wei Xiong

While the adult human heart has very limited regenerative potential, the adult zebrafish heart can fully regenerate after 20% ventricular resection. Although previous reports suggest that developmental signaling pathways such as FGF and PDGF are reused in adult heart regeneration, the underlying intracellular mechanisms remain largely unknown. Here we show that H2O2 acts as a novel epicardial and myocardial signal to prime the heart for regeneration in adult zebrafish. Live imaging of intact hearts revealed highly localized H2O2 (∼30 μM) production in the epicardium and adjacent compact myocardium at the resection site. Decreasing H2O2 formation with the Duox inhibitors diphenyleneiodonium (DPI) or apocynin, or scavenging H2O2 by catalase overexpression markedly impaired cardiac regeneration while exogenous H2O2 rescued the inhibitory effects of DPI on cardiac regeneration, indicating that H2O2 is an essential and sufficient signal in this process. Mechanistically, elevated H2O2 destabilized the redox-sensitive phosphatase Dusp6 and hence increased the phosphorylation of Erk1/2. The Dusp6 inhibitor BCI achieved similar pro-regenerative effects while transgenic overexpression of dusp6 impaired cardiac regeneration. H2O2 plays a dual role in recruiting immune cells and promoting heart regeneration through two relatively independent pathways. We conclude that H2O2 potentially generated from Duox/Nox2 promotes heart regeneration in zebrafish by unleashing MAP kinase signaling through a derepression mechanism involving Dusp6.


Journal of Cell Science | 2015

Mecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish

Hai Gao; Ye Bu; Qing Wu; Xu Wang; Nannan Chang; Lei Lei; Shilin Chen; Dong Liu; Xiaojun Zhu; Keping Hu; Jing-Wei Xiong

ABSTRACT Rett syndrome (RTT) is a progressive neurological disorder caused by mutations in the X-linked protein methyl-CpG-binding protein 2 (MeCP2). The endogenous function of MeCP2 during neural differentiation is still unclear. Here, we report that mecp2 is required for brain development in zebrafish. Mecp2 was broadly expressed initially in embryos and enriched later in the brain. Either morpholino knockdown or genetic depletion of mecp2 inhibited neuronal differentiation, whereas its overexpression promoted neuronal differentiation, suggesting an essential role of mecp2 in directing neural precursors into differentiated neurons. Mechanistically, her2 (the zebrafish ortholog of mammalian Hes5) was upregulated in mecp2 morphants in an Id1-dependent manner. Moreover, knockdown of either her2 or id1 fully rescued neuronal differentiation in mecp2 morphants. These results suggest that Mecp2 plays an important role in neural cell development by suppressing the Id1–Her2 axis, and provide new evidence that embryonic neural defects contribute to the later motor and cognitive dysfunctions in RTT. Summary: Mecp2 suppresses neural cell development by suppressing the Id1–Her2 (Hes5 in mammals) axis, which is a mechanism that might contribute to the later motor and cognitive dysfunctions in Rett syndrome.


Nature Communications | 2016

Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish.

Chenglu Xiao; Lu Gao; Yu Hou; Cong-Fei Xu; Nannan Chang; Fang Wang; Keping Hu; Aibin He; Ying Luo; Jun Wang; Jinrong Peng; Fuchou Tang; Xiaojun Zhu; Jing-Wei Xiong

The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(gata4:EGFP) cardiomyocytes, leading to severe cardiac fibrosis and compromised myocardial regeneration. RNA-seq and RNAscope analyses reveal that inhibition of Brg1 increases the expression of cyclin-dependent kinase inhibitors such as cdkn1a and cdkn1c in the myocardium after ventricular resection; and accordingly, myocardial-specific expression of dn-xBrg1 blunts myocardial proliferation and regeneration. Mechanistically, injury-induced Brg1, via its interaction with Dnmt3ab, suppresses the expression of cdkn1c by increasing the methylation level of CpG sites at the cdkn1c promoter. Taken together, our results suggest that Brg1 promotes heart regeneration by repressing cyclin-dependent kinase inhibitors partly through Dnmt3ab-dependent DNA methylation.


Nucleic Acids Research | 2017

Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors

Lei Lei; Shouyu Yan; Ran Yang; Jia-Yu Chen; Yumei Li; Ye Bu; Nannan Chang; Qinchao Zhou; Xiaojun Zhu; Chuan-Yun Li; Jing-Wei Xiong

Abstract Haploinsufficiency of EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2) is linked to human mandibulofacial dysostosis, Guion-Almeida type (MFDGA), but the underlying cellular and molecular mechanisms remain to be addressed. We report here the isolation, cloning and functional analysis of the mutated eftud2 (snu114) in a novel neuronal mutant fn10a in zebrafish. This mutant displayed abnormal brain development with evident neuronal apoptosis while the development of other organs appeared less affected. Positional cloning revealed a nonsense mutation such that the mutant eftud2 mRNA encoded a truncated Eftud2 protein and was subjected to nonsense-mediated decay. Disruption of eftud2 led to increased apoptosis and mitosis of neural progenitors while it had little effect on differentiated neurons. Further RNA-seq and functional analyses revealed a transcriptome-wide RNA splicing deficiency and a large amount of intron-retaining and exon-skipping transcripts, which resulted in inadequate nonsense-mediated RNA decay and activation of the p53 pathway in fn10a mutants. Therefore, our study has established that eftud2 functions in RNA splicing during neural development and provides a suitable zebrafish model for studying the molecular pathology of the neurological disease MFDGA.


Journal of Cell Science | 2014

Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish

Ye Bu; Fuqin Su; Xu Wang; Hai Gao; Lei Lei; Nannan Chang; Qing Wu; Keping Hu; Xiaojun Zhu; Zhijie Chang; Kun Meng; Jing-Wei Xiong

ABSTRACT Protein tyrosine phosphatases (PTPs) are involved in hematopoiesis, but the function of many PTPs is not well characterized in vivo. Here, we have identified Ptpn9a, an ortholog of human PTPN9, as a crucial regulator of erythroid cell development in zebrafish embryos. ptpn9a, but not ptpn9b, was expressed in the posterior lateral plate mesoderm and intermediate cell mass – two primitive hematopoietic sites during zebrafish embryogenesis. Morpholino-mediated knockdown of ptpn9a caused erythrocytes to be depleted by inhibiting erythroid cell maturation without affecting erythroid proliferation and apoptosis. Consistently, both dominant-negative PTPN9 (with mutation C515S) and siRNA against PTPN9 inhibited erythroid differentiation in human K562 cells. Mechanistically, depletion of ptpn9 in zebrafish embryos in vivo or in K562 cells in vitro increased phosphorylated STAT3, and the hyper-phosphorylated STAT3 entrapped and prevented the transcription factors GATA1 and ZBP-89 (also known as ZNF148) from regulating erythroid gene expression. These findings imply that PTPN9 plays an important role in erythropoiesis by disrupting an inhibitory complex of phosphorylated STAT3, GATA1 and ZBP-89, providing new cellular and molecular insights into the role of ptpn9a in developmental hematopoiesis.


Developmental Biology | 2015

PEG-PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart.

Jupeng Diao; Hong-Xia Wang; Nannan Chang; Xiao-Hai Zhou; Xiaojun Zhu; Jun Wang; Jing-Wei Xiong

The remarkable regenerative capacity of the zebrafish has made it an important model organism for studying heart regeneration. However, current loss-of-function studies are limited by a lack of conditional-knockout and effective gene-knockdown methods for the adult heart. Here, we report a novel siRNA knockdown method facilitated by poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) nanoparticles. The siRNA-encapsulated nanoparticles successfully entered cells and resulted in remarkable gene-specific knockdown in the adult heart. This effect was demonstrated by down-regulation of the Aldh1a2 and Dusp6 proteins after intrapleural delivery of nanoparticle-encapsulated siRNAs. Furthermore, siRNA-mediated knockdown of Aldh1a2 was sufficient to inhibit myocardial proliferation and decrease the numbers of Gata4-positive cardiomyocytes after ventricular resection. Therefore, the results of this work demonstrate that nanoparticle-facilitated siRNA delivery provides an alternative tool for loss-of-function studies of genes in the adult heart in particular and other organs in general in the adult zebrafish.


Journal of Cell Science | 2013

Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish.

Xu Wang; Qingming Yu; Qing Wu; Ye Bu; Nannan Chang; Shouyu Yan; Xiao-Hai Zhou; Xiaojun Zhu; Jing-Wei Xiong

Summary Abnormal cardiac valve morphogenesis is a common cause of human congenital heart disease. The molecular mechanisms regulating endocardial cell proliferation and differentiation into cardiac valves remain largely unknown, although great progress has been made on the endocardial contribution to the atrioventricular cushion and valve formation. We found that scotch tapete382 (scote382) encodes a novel transmembrane protein that is crucial for endocardial cell proliferation and heart valve development. The zebrafish scote382 mutant showed diminished endocardial cell proliferation, lack of heart valve leaflets and abnormal common cardinal and caudal veins. Positional cloning revealed a C946T nonsense mutation of a novel gene pku300 in the scote382 locus, which encoded a 540-amino-acid protein on cell membranes with one putative transmembrane domain and three IgG domains. A known G3935T missense mutation of fbn2b was also found ∼570 kb away from pku300 in scote382 mutants. The genetic mutant scopku300, derived from scote382, only had the C946T mutation of pku300 and showed reduced numbers of atrial endocardial cells and an abnormal common cardinal vein. Morpholino knockdown of fbn2b led to fewer atrial endocardial cells and an abnormal caudal vein. Knockdown of both pku300 and fbn2b phenocopied these phenotypes in scote382 genetic mutants. pku300 transgenic expression in endocardial and endothelial cells, but not myocardial cells, partially rescued the atrial endocardial defects in scote382 mutants. Mechanistically, pku300 and fbn2b were required for endocardial cell proliferation, endocardial Notch signaling and the proper formation of endocardial cell adhesion and tight junctions, all of which are crucial for cardiac valve development. We conclude that pku300 and fbn2b represent the few genes capable of regulating endocardial cell proliferation and signaling in zebrafish cardiac valve development.


Journal of Genetics and Genomics | 2012

Overlapping Cardiac Programs in Heart Development and Regeneration

Yi-Song Zhen; Qing Wu; Chenglu Xiao; Nannan Chang; Xu Wang; Lei Lei; Xiaojun Zhu; Jing-Wei Xiong

Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.


Birth Defects Research Part C-embryo Today-reviews | 2013

Recent advances in heart regeneration.

Jing-Wei Xiong; Nannan Chang

Although cardiac stem cells (CSCs) and tissue engineering are very promising for cardiac regenerative medicine, studies with model organisms for heart regeneration will provide alternative therapeutic targets and opportunities. Here, we present a review on heart regeneration, with a particular focus on the most recent work in mouse and zebrafish. We attempt to summarize the recent progresses and bottlenecks of CSCs and tissue engineering for heart regeneration; and emphasize what we have learned from mouse and zebrafish regenerative models on discovering crucial genetic and epigenetic factors for stimulating heart regeneration; and speculate the potential application of these regenerative factors for heart failure. A brief perspective highlights several important and promising research directions in this exciting field.

Collaboration


Dive into the Nannan Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge