Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nannette Y. Yount is active.

Publication


Featured researches published by Nannette Y. Yount.


Pharmacological Reviews | 2003

Mechanisms of Antimicrobial Peptide Action and Resistance

Michael R. Yeaman; Nannette Y. Yount

Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.


Biopolymers | 2006

Advances in antimicrobial peptide immunobiology

Nannette Y. Yount; Arnold S. Bayer; Yan Q. Xiong; Michael R. Yeaman

Antimicrobial peptides are ancient components of the innate immune system and have been isolated from organisms spanning the phylogenetic spectrum. Over an evolutionary time span, these peptides have retained potency, in the face of highly mutable target microorganisms. This fact suggests important coevolutionary influences in the host–pathogen relationship. Despite their diverse origins, the majority of antimicrobial peptides have common biophysical parameters that are likely essential for activity, including small size, cationicity, and amphipathicity. Although more than 900 different antimicrobial peptides have been characterized, most can be grouped as belonging to one of three structural classes: (1) linear, often of α‐helical propensity; (2) cysteine stabilized, most commonly conforming to β‐sheet structure; and (3) those with one or more predominant amino acid residues, but variable in structure. Interestingly, these biophysical and structural features are retained in ribosomally as well as nonribosomally synthesized peptides. Therefore, it appears that a relatively limited set of physicochemical features is required for antimicrobial peptide efficacy against a broad spectrum of microbial pathogens.


Nature Reviews Microbiology | 2007

Unifying themes in host defence effector polypeptides

Michael R. Yeaman; Nannette Y. Yount

It is said that nature is the greatest innovator, yet molecular conservation can be equally powerful. One key requirement for the survival of any host is its ability to defend against infection, predation and competition. Recent discoveries, including the presence of a multidimensional structural signature, have revealed a previously unforeseen structural and functional congruence among host defence effector molecules spanning all kingdoms of life. Antimicrobial peptides, kinocidins, polypeptide venoms and other molecules that were once thought to be distinct in form and function now appear to be members of an ancient family of host defence effectors. These molecules probably descended from archetype predecessors that emerged during the beginning of life on earth. Understanding how nature has sustained these host defence molecules with a potent efficacy in the face of dynamic microbial evolution should provide new opportunities to prevent or treat life-threatening infections.


Annual Review of Pharmacology and Toxicology | 2012

Emerging Themes and Therapeutic Prospects for Anti-Infective Peptides

Nannette Y. Yount; Michael R. Yeaman

Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.


Annals of the New York Academy of Sciences | 2013

Peptide antimicrobials: cell wall as a bacterial target

Nannette Y. Yount; Michael R. Yeaman

Endogenous host defense peptides (HDPs) are among the most ancient immune mediators, constituting a first line of defense against invading pathogens across the evolutionary continuum. Generally, HDPs are small (<10 kDa), cationic, and amphipathic polypeptides, often broadly classified based on structure. In eukaryotes, major HDP classes include disulfide‐stabilized (e.g., defensins), and α‐helical or extended (e.g., cathelicidins) peptides. Prokaryote HDPs are generally referred to as bacteriocins, colicins, or lantibiotics, many of which undergo extensive posttranslational modifications. One target for prokaryotic and eukaryotic HDPs is the bacterial cell wall, an essential structural feature conserved among broad classes of bacteria. A primary building block of the cell wall is peptidoglycan, a macromolecular complex that arises through a series of reactions including membrane translocation, extracellular anchoring, and side chain cross‐linking. Each of these steps represents a potential target for HDP inhibition, leading to bacteriostatic or bactericidal outcomes. Thus, understanding the relationships between HDPs and cell wall targets may shed light on new peptide antimicrobial agents and strategies to meet the daunting challenge of antibiotic resistance.


Protein and Peptide Letters | 2005

Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance.

Nannette Y. Yount; Michael R. Yeaman

Antimicrobial peptides are present in organisms spanning virtually every kingdom, and employ sophisticated mechanisms to exert rapid microbicidal action consistent with their key roles in host defense. Offsetting these mechanisms, some microbial pathogens have evolved complex countermeasures to neutralize exposure to and subvert mechanisms of antimicrobial peptides. The following discussion highlights recent advances that offer greater understanding of the mechanisms of action and resistance of antimicrobial peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine

Nannette Y. Yount; Deborah Kupferwasser; Alberto Spisni; Stephen M. Dutz; Zachary H. Ramjan; Shantanu Sharma; Alan J. Waring; Michael R. Yeaman

Recent discoveries suggest cysteine-stabilized toxins and antimicrobial peptides have structure–activity parallels derived by common ancestry. Here, human antimicrobial peptide hBD-2 and rattlesnake venom-toxin crotamine were compared in phylogeny, 3D structure, target cell specificity, and mechanisms of action. Results indicate a striking degree of structural and phylogenetic congruence. Importantly, these polypeptides also exhibited functional reciprocity: (i) they exerted highly similar antimicrobial pH optima and spectra; (ii) both altered membrane potential consistent with ion channel-perturbing activities; and (iii) both peptides induced phosphatidylserine accessibility in eukaryotic cells. However, the Nav channel-inhibitor tetrodotoxin antagonized hBD-2 mechanisms, but not those of crotamine. As crotamine targets eukaryotic ion channels, computational docking was used to compare hBD-2 versus crotamine interactions with prototypic bacterial, fungal, or mammalian Kv channels. Models support direct interactions of each peptide with Kv channels. However, while crotamine localized to occlude Kv channels in eukaryotic but not prokaryotic cells, hBD-2 interacted with prokaryotic and eukaryotic Kv channels but did not occlude either. Together, these results support the hypothesis that antimicrobial and cytotoxic polypeptides have ancestral structure-function homology, but evolved to preferentially target respective microbial versus mammalian ion channels via residue-specific interactions. These insights may accelerate development of anti-infective or therapeutic peptides that selectively target microbial or abnormal host cells.


Antimicrobial Agents and Chemotherapy | 2004

Platelet Microbicidal Protein 1: Structural Themes of a Multifunctional Antimicrobial Peptide

Nannette Y. Yount; Kimberly D. Gank; Yan Q. Xiong; Arnold S. Bayer; Thomas Pender; William Welch; Michael R. Yeaman

ABSTRACT Mammalian platelets release platelet microbicidal proteins (PMPs) as components of their antimicrobial armamentarium. The present studies defined the structure of PMP-1 and examined its structure-activity relationships. Amino acid sequencing and mass spectroscopy demonstrated that distinct N-terminal polymorphism variants of PMP-1 isolated from nonstimulated or thrombin-stimulated platelets arise from a single PMP-1 propeptide. Sequence data (NH2-[S]D1DPKE5SEGDL10HCVCV15KTTSL20 . . .) enabled cloning of PMP-1 from bone marrow and characterization of its full-length cDNA. PMP-1 is translated as a 106-amino-acid precursor and is processed to yield 73-residue (8,053 Da) and 72-residue (7,951-Da) variants. Searches with the BLAST program and sequence alignments demonstrated the homology of PMP-1 to members of the mammalian platelet factor 4 (PF-4) family of proteins. On the basis of phylogenetic relatedness, congruent sequence motifs, and predicted three-dimensional structures, PMP-1 shares the greatest homology with human PF-4 (hPF-4). By integration of its structural and antimicrobial properties, these results establish the identity of PMP-1 as a novel rabbit analogue of the microbicidal chemokine (kinocidin) hPF-4. These findings advance the hypothesis that stimuli in the setting of infection prompt platelets to release PF-4-class or related kinocidins, which have structures consistent with their likely multiple roles that bridge molecular and cellular mechanisms of antimicrobial host defense.


Infection and Immunity | 2008

Platelet Antistaphylococcal Responses Occur through P2X1 and P2Y12 Receptor-Induced Activation and Kinocidin Release

Darin A. Trier; Kimberly D. Gank; Deborah Kupferwasser; Nannette Y. Yount; William J. French; Alan D. Michelson; Leon Iri Kupferwasser; Yan Q. Xiong; Arnold S. Bayer; Michael R. Yeaman

ABSTRACT Platelets (PLTs) act in antimicrobial host defense by releasing PLT microbicidal proteins (PMPs) or PLT kinocidins (PKs). Receptors mediating staphylocidal efficacy and PMP or PK release versus isogenic PMP-susceptible (ISP479C) and -resistant (ISP479R) Staphylococcus aureus strains were examined in vitro. Isolated PLTs were incubated with ISP479C or ISP479R (PLT/S. aureus ratio range, 1:1 to 10,000:1) in the presence or absence of a panel of PLT inhibitors, including P2X and P2Y receptor antagonists of increasingly narrow specificity, and PLT adhesion receptors (CD41, CD42b, and CD62P). PLT-to-S. aureus exposure ratios of ≥10:1 yielded significant reductions in the viability of both strains. Results from reversed-phase high-performance liquid chromatography indicated that staphylocidal PLT releasates contained PMPs and PKs. At ratios below 10:1, the PLT antistaphylococcal efficacy relative to the intrinsic S. aureus PMP-susceptible or -resistant phenotype diminished. Apyrase (an agent of ADP degradation), suramin (a general P2 receptor antagonist), pyridoxal 5′-phosphonucleotide derivative (a specific P2X1 antagonist), and cangrelor (a specific P2Y12 antagonist) mitigated the PLT staphylocidal response against both strains, correlating with reduced levels of PMP and PK release. Specific inhibition occurred in the presence and absence of homologous plasma. The antagonism of the thromboxane A2, cyclooxygenase-1/cyclooxygenase-2, or phospholipase C pathway or the hindrance of surface adhesion receptors failed to impede PLT anti-S. aureus responses. These results suggest a multifactorial PLT anti-S. aureus response mechanism involving (i) a PLT-to-S. aureus ratio sufficient for activation; (ii) the ensuing degranulation of PMPs, PKs, ADP, and/or ATP; (iii) the activation of P2X1/P2Y12 receptors on adjacent PLTs; and (iv) the recursive amplification of PMP and PK release from these PLTs.


Eukaryotic Cell | 2008

SSD1 Is Integral to Host Defense Peptide Resistance in Candida albicans

Kimberly D. Gank; Michael R. Yeaman; Satoshi Kojima; Nannette Y. Yount; Hyunsook Park; John E. Edwards; Scott G. Filler; Yue Fu

ABSTRACT Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082RSSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.

Collaboration


Dive into the Nannette Y. Yount's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Waring

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Yeaman

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Q. Xiong

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric P. Brass

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge